

Modern Tkinter for Busy Python Developers

Quickly learn to create great looking user interfaces for Windows,

Mac and Linux using Python's standard GUI toolkit

Mark Roseman

Late Afternoon Press

Modern Tkinter for Busy Python Developers

1. Introduction

1.1. Who This Book Is For

1.2. Why Tkinter?

1.3. Modern Best Practices

1.4. The Better Way Forward

1.5. How to Use

2. A Brief History of Tk and Tkinter

2.1. The Early Years

2.2. The Middle Years

2.3. The Silent Revolution

2.4. Tk Today

2.5. Tkinter

3. Installing Tkinter

3.1. Installing Tk on macOS

3.2. Installing Tk on Windows

3.3. Installing Tk on Linux

3.4. The Obligatory First Program

4. A First (Real) Example

4.1. Design

4.2. Code

4.3. Step-by-Step Walkthrough

4.4. What's Missing

5. Tk Concepts

5.1. Widgets

5.2. Geometry Management

5.3. Event Handling

6. Basic Widgets

6.1. Frame

6.2. Label

6.3. Button

6.4. Checkbutton

6.5. Radiobutton

6.6. Entry

6.7. Combobox

7. The Grid Geometry Manager

7.1. Columns and Rows

7.2. Spanning Multiple Cells

7.3. Layout within the Cell

7.4. Handling Resize

7.5. Padding

7.6. Additional Grid Features

7.7. Nested Layouts

8. More Widgets

8.1. Listbox

8.2. Scrollbar

8.3. Text

8.4. Scale

8.5. Spinbox

8.6. Progressbar

9. Event Loop

9.1. Blocking the Event Loop

9.2. One Step at a Time

9.3. Asynchronous I/O

9.4. Threads or Processes

9.5. Nested Event Processing

10. Menus

10.1. Menubars

10.2. Platform Menus

10.3. Contextual Menus

11. Windows and Dialogs

11.1. Creating and Destroying Windows

11.2. Window Behavior and Styles

11.3. Dialog Windows

12. Organizing Complex Interfaces

12.1. Separator

12.2. Label Frames

12.3. Paned Windows

12.4. Notebook

13. Fonts, Colors, Images

13.1. Fonts

13.2. Colors

13.3. Images

14. Canvas

14.1. Creating Items

14.2. Event Bindings

14.3. Tags

14.4. Scrolling

15. Text

15.1. The Basics

15.2. Modifying the Text in Code

15.3. Formatting with Tags

15.4. Events and Bindings

15.5. Selecting Text

15.6. Marks

15.7. Images and Widgets

15.8. Even More

16. Treeview

16.1. Adding Items to the Tree

16.2. Rearranging Items

16.3. Displaying Information for each Item

16.4. Item Appearance and Events

16.5. Customizing the Display

17. Styles and Themes

17.1. Using Existing Themes

17.2. Using Styles

17.3. What's Inside a Style?

17.4. Manipulating Styles

17.5. Sound Difficult to you?

17.6. Advanced: More on Elements

18. Case Study: IDLE Modernization

18.1. Project Goals

18.2. Menus

18.3. Main Window

18.4. Preferences Dialog

18.5. Other Dialogs

18.6. Window Integration

18.7. Workarounds, Hacks, and More

Copyright

About the Author

Title Page

Cover

Table of Contents

Start Page

1. Introduction

This book will help you quickly get up to speed and build

mainstream desktop graphical user interfaces with Python 3 and

Tkinter. As you may know, Tkinter is the Python interface to a

GUI library called Tk. It was initially developed for the Tcl

language but widely adopted by other dynamic languages,

including Ruby, Perl, and (of course) Python.

 This book will teach you how to use Tkinter and Tk, in
particular, Tk 8.5 and 8.6. Tk 8.5 was a milestone release. It

marked a significant departure from older versions of Tk that

most people know and love recognize.

 The downside is that unless you know one or two crucial
things, it's actually not that significant a release. In fact, it will

seem like nothing has changed at all. Due to backward

compatibility, unless existing programs make a few simple

changes, they won't look any different. (Imagine if you just moved

into a rustic and quirky historical home. You'd want someone to

point out where they've hidden the light switches and power

outlets, wouldn't you?)

 If you're new to Tk or creating a new program, this book will

ensure you get started the right way. If you've used Tk before, it

will help you bring your knowledge right up to date. And if you're

updating code that may have been written years ago, you'll see

step-by-step how to bring it into the modern age. It's a cliche,

but I can't believe how much I've learned in writing this book,

and I've been using Tk for over twenty-five years.

 The general state of Tk documentation (outside the Tcl-oriented

reference documentation, which is excellent) is unfortunately not

at a high point these days. This is particularly true for developers

using Tk from languages other than Tcl or working on multiple

platforms. So this book will, as much as possible, target

developers on the three main platforms (Windows, macOS, and

Linux).

 It's also not a reference guide. It's not going to cover
everything, just the essentials you need in 95% of applications.

The rest you can find in reference documentation.

1.1. Who This Book Is For

This book is designed for developers building tools and

applications in Tk. It's also concerned with fairly mainstream

graphical user interfaces, with buttons, lists, checkboxes, rich text

editing, 2D graphics, etc. So if you're either looking to hack on

Tk's internal C code or build the next great 3D immersive game

interface, this is probably not the material for you.

 This book also doesn't teach you Python, so you should have
a basic grasp of that already. This book uses Python 3 exclusively

and does not cover using Tkinter in Python 2. Similarly, you

should have a basic familiarity with desktop applications in

general. While you don't have to be a user interface designer,

some appreciation of GUI design is always helpful.

1.2. Why Tkinter?

If you're new to building desktop graphical user interfaces in

Python, why might you use Tkinter? After all, there are many

options, including PyQt, PySide, WxPython, PySimpleGUI, and Kivy.

Each has various pluses and minuses.

 There are several reasons people chose Tkinter. It's Python's
default GUI toolkit, the only one included in its standard library.

It's cross-platform so that the same code can run across

Windows, macOS, or Linux systems. Perhaps most importantly, it's

easy to learn and work with. It keeps boilerplate and overhead to

a minimum. It's Pythonic; it just feels right. Unlike many options

that are front ends to C++ libraries, Tkinter is built on a user

interface tool designed for dynamic languages.

 Many large commercial applications these days are web-based.

In fact, web (and mobile) development sucked most of the life

out of desktop user interface toolkits, which is why so many

mature tools are still widely used today. Writing desktop

applications still makes sense in many situations, whether open

source projects, personal or company-internal tools, or putting

together a quick front end for a specific project. These are

situations where Tkinter excels.

1.3. Modern Best Practices

This book is all about building modern user interfaces using the

current tools Tk has to offer. It's all about the best practices you

need to know to do this.

 For most tools, you wouldn't think you'd have to say

something like that. But for Tk, that's not the case. Tk has had a

very long evolution, and any evolution tends to leave you with a

bit of cruft. Couple that with how much graphical user interface

platforms and standards have evolved in that time. You can see

where keeping something as large and complex as a GUI library

up to date (and backward compatible) may be challenging.

 Tk has, for most of its lifetime, gotten a bad rap, to put it

mildly. Some of this has been well deserved, most of it not so

much. Like any GUI tool, you can create absolutely terrible-looking

and outdated user interfaces with it. It can also be used to

develop spectacularly good ones with the proper care and

attention. Most people know about the crappy ones; most of the

good ones people don't even know are done in Tk. In this book,

we're going to focus on what you need to build good user

interfaces. Thankfully, this isn't nearly as hard as it used to be

before Tk 8.5.

 So, to sum up: modern desktop graphical user interfaces,

using modern conventions and design sense, using the modern

tools provided by Tk 8.5 and 8.6.

Tk Extensions

When it comes to modern best practices, Tk extensions deserve a

special word of note. Over the years, developers have created all

kinds of add-ons to Tk, for example, adding new widgets not

available in the core (or at least not at the time). Some well-

known and quite popular Tk extensions include BLT, Tix, iWidgets,

BWidgets; there are many, many others.

 Many of these extensions were created decades ago. Because

core Tk has always been highly backward compatible, these

extensions generally keep working with newer versions. However,

they may not reflect current platform conventions or styles. They

may "work" but can make your application appear extremely dated

or out of place. In many cases, the facilities they provide have

been obsoleted by newer and more modern facilities recently built

into Tk itself.

 If you decide to use Tk extensions, it's highly recommended to

investigate and review your choices carefully.

1.4. The Better Way Forward

Tk gives you a lot of choices. There are at least six different ways

to layout widgets on the screen. Multiple widgets can be used to

accomplish the same thing, and that's before considering any Tk

extensions. Tk emphasized backward compatibility, which is a

double-edged sword. Most of these old ways of doing things still

keep working, year after year. That doesn't mean you should keep

using some of them.

 So there are many in Tk, but frankly, all that choice gets in

the way. If you want to learn and use Tk, you don't need to

know ten different ways to accomplish the same thing. You

shouldn't need to do all the research, explore all the options, and

make a choice yourself. You need to know the right way to do

things today. That's what this book will give you. Think of it as

the documentation equivalent of opinionated

 So we'll often use different ways of doing things than you'd
find in other documentation or examples. Usually, it's because

when those were written, the better ways didn't even exist yet.

(Here's a litmus test for Tk documentation: does it use the

archaic pack instead of the modern Later on, once you're an

expert and encounter some wacky situation where the typical

choice doesn't fit, you can go hunt around for alternatives.

1.5. How to Use

While the book is designed to be used linearly, feel free to jump

around as you see fit. We'll often provide links to information,

such as the full reference for a particular command. While Tk's

native reference documentation is Tcl-based, it's accurate, well

written, and usually easy to "translate" into Python. Unfortunately,

there's not yet Tkinter reference documentation that approaches its

quality or completeness.

 You can find a GitHub repository containing many of the

larger examples accessible via You'll also find direct links below

the code listings in the book.

Conventions

As is typically done, code listings, interpreter or shell commands,

and responses will be indicated with a fixed-width When showing

an interactive session with the interpreter, what you type will be in

bold

 When describing procedure or method calls, the literal parts

(e.g., the method name) will be in a plain fixed-width font.

Parameters, where you should fill in the actual value, will add

italics, and optional parameters will be surrounded by '?', e.g., set

variable

 In general, when referring to these procedures or method calls

in the text, we'll omit punctuation (parentheses, commas, equals,

etc.) that Tkinter requires. Code snippets show the complete

syntax, of course.

 You'll see some paragraphs that are separated from the main

text. These are used for several different things. Each is identified

with a different icon, as follows:

This paragraph will help point out common mistakes that people

make or suggest helpful but not necessarily obvious solutions related

to the topic.

This indicates a new way of doing things in Tk 8.5 or Tk 8.6 that is

very different from how things would have been done previously.

People familiar with older versions of Tk (or working on programs

developed with older versions of Tk) should pay close attention.

This paragraph provides some additional background information. It's

not strictly necessary to learn the topic at hand, but that might

clarify how or why things are done the way they are.

This highlights an area in Tk that could charitably be described as a

"rough edge." It may indicate a faulty or missing API requiring you to

use a workaround in your code. Because these things tend to get fixed

up over time, it's worth marking them in your code with a "TODO."

That way, you can remember to go back later and see if a newer API

resolves the problem cleanly.

2. A Brief History of Tk and Tkinter

Tk is a user interface toolkit that makes it easy to build desktop

graphical user interfaces. Tk is meaning the same code can be

made to run the same on Windows, macOS, or X11 under a

huge range of Unix systems (e.g., Linux). Compared with many

user interface toolkits, Tk is also quite meaning that it takes care

of many details for you. That makes your code simpler. You don't

have to be a professional programmer to use it. It's ideal for

when you want to quickly create a user interface, perhaps for a

personal project or an internal company tool.

 Tk is also unique in that it was designed from the start to be

paired with a high-level dynamic programming language (like Tcl,

Python, Ruby, Perl) as opposed to lower-level languages like C or

C++. In fact, you'll find a Tk binding for most dynamic languages

available today. It's easy to embed and produces executables

much smaller than many other GUI libraries. It also is BSD-

licensed, making it attractive for both open source and

commercial developers.

 Together, these factors make Tk an attractive option for people

trying to develop a GUI on Windows, macOS, or Unix, especially

if they want it to run on all three. And because Tk is used from

dynamic programming languages, it's an accessible tool not only

for hardcore developers but also for many people without a

computer science or engineering background.

 Tk has been around forever and changed a lot over the years,
resulting in a ton of horribly outdated and incorrect information

out there. This makes it pretty overwhelming if you just want to

figure out if and how to use Tk today. That's what this book will

help with.

 Before diving in, we'll provide a brief history of where it came

from, why and how it caught on, and how things have evolved.

This will help put a great many things in context.

2.1. The Early Years

Tk was created around 1988 by John Ousterhout, a computer

science professor at UC Berkeley. It was developed as a way to

easily build GUI's from his Tcl scripting language. Tcl was Unix-

only at first, and so Tk ran under X11. The first open source

release was around 1991, with rapid adoption starting about a

year later. You can find John's recollections of the early years at

the main Tcl/Tk developer site,

 Tk caught on because lots of people at universities were using
Unix/X11 in the early 1990s. The mainstream X11 libraries like Xt,

Xaw, and Motif were horribly painful to use. A "hello world"

application would literally take a couple hundred lines of C or

C++. Then Tk comes along, where a good-looking "hello world" is

a one-liner, and the toolkit took care of all the housekeeping like

redrawing, clipping, hit detection, event dispatch, and more. It

was a no-brainer.

 For a (very brief) moment, Tcl and Tk were the cool and

exciting new things. Developers and users of other languages paid

attention, and many language bindings to Tk were developed.

Python's Tkinter first appeared around mid-1994.

2.2. The Middle Years

In 1994, John moved to Sun Labs, where he assembled a team

to help move Tcl/Tk forward even more. The bulk of the team

shifted to a startup called Scriptics (later Ajuba) and continued to

evolve Tcl/Tk until the company was acquired in 2000, mostly for

the non-Tcl/Tk assets it had developed.

 Those years produced a major advancement for Tk, the

development of the Windows and macOS versions. This meant

that the same script to create a GUI would run unmodified on

Unix, Windows, or macOS.

 Stewardship of Tk (and Tcl) moved to a more community-

centered model in mid-2000, with a Tcl/Tk core team at the

center but with much broader participation.

 Tk continued to evolve, but the pace slowed. Incremental

enhancements and adding support for new macOS and Windows

versions precluded any significant leaps forward. Almost no core

work aimed to track the dueling Gnome/KDE user interface

standards emerging on Linux. Though Tk has always been highly

customizable, unless you knew what you were doing and put in

the effort, it started looking more and more dated.

2.3. The Silent Revolution

Tk 8.5.0 was released on December 20, 2007, and was as crucial

a step forward as the Windows and macOS versions in 8.0, over

ten years earlier. The core distribution included "new" widgets for

such now-common components like trees, combo-boxes, tabbed

notebooks, and more. These had only been available before as

add-ons (with far too many to choose from).

 Most importantly, Tk 8.5 added a new "themed" widget set,

which complements but does not replace the "classic" widget set.

The classic widgets provide full backward compatibility, retaining

their almost infinite flexibility, but often dated appearance. The

new themed widgets look much better on their respective

platforms out of the box. It was intended that developers should

use them for nearly all mainstream user interface needs. The new

widgets also support changing their look and feel via themes,

making "skinnable" user interfaces easy for applications and

platforms where they are appropriate.

 Why do I call this Tk's "silent revolution?" This all happened

about ten years past its heyday. At the time, web development

had relegated desktop GUI's to irrelevancy, and few developers

were paying attention to Tk. And if you weren't paying attention,

you wouldn't know that anything had changed. Thanks to

backward compatibility, for most people, it really didn't. Sadly.

2.4. Tk Today

This is being written in September 2020. In the dozen years since

8.5.0 was released, there have been approximately 30 new releases

of the core Tcl/Tk package, which is currently at version 8.6.10. In

that time, even though the development of new features has

slowed, it's continued to improve.

2.5. Tkinter

Python's Tkinter was one of the earlier bindings to Tk and

certainly the most popular. Tkinter was originally written by Fredrik

Lundh. It works like most Tk bindings by embedding a Tcl

interpreter inside the Python application. Tkinter commands are

translated into Tcl commands and evaluated in that interpreter.

 In 2009, Guilherme Polo added support for the newer "ttk"

themed widgets from Tk into Tkinter, starting with Python 2.7 (on

the 2.x branch), and Python 3.1. This opened the door for

building far better user interfaces with Tkinter. Documentation

remained the main obstacle to Python programmers learning

about the new themed widgets.

3. Installing Tkinter

In this chapter, you'll get Tk and Tkinter installed on your

machine, verify it works, and then see a quick example of what a

Tkinter program looks like.

 In the past, this was a multiple-step process. However, if you're

using Python 3.7 or newer, you're in luck! The Python binary

installers for macOS and Windows, available at now include

everything you need to use Tkinter out of the box, including the

underlying Tcl/Tk libraries.

 If you're running on Linux, all popular distros have packages
available that make installing Tkinter a breeze.

 If you're using an older version of Python or compiling from

the source, you'll need to install Tcl/Tk on your system. If you're

in this situation, we'll explain how to use a free distribution

called ActiveTcl (made by to do so.

 Remember, this book assumes you're using Python 3, not

Python 2. There are some significant differences between the two.

That includes module naming, which is the first thing you'll

encounter when trying to use Tkinter. In Python 2.x, the module

was named Tkinter (note the uppercase "T"), while in Python 3.x,

it is named tkinter (all lowercase).

3.1. Installing Tk on macOS

The Easy Way

As noted, the easiest way to get Tk and Tkinter installed on your

system is using Python's binary installer, available at Thanks to

work by Python core developer Ned Deily, binary installers starting

with version 3.7 include Tcl and Tk.

Remember, we're using Python 3.x here, not 2.x. As of this writing, the

latest 3.9 installer (3.9.0rc1) includes Tk 8.6.8.

If, however, you're compiling Python yourself, you'll have more

work to do. Read on...

Installing Tcl/Tk

The Tkinter module is included with core Python, of course, but

you'll need a version of Tcl/Tk on your system to compile it

against. Do yourself a huge favor and get the most recent

version.

 Whatever you do, do not rely on the Tk versions included in

macOS! Older versions included Tk 8.4.x. Even more recent

macOS versions include an early 8.5 version (8.5.9, released in

2010), which has several serious bugs easily triggered by Tkinter.

 While there are several ways to get Tcl and Tk onto your

machine, the easiest and most recommended is to use the

ActiveTcl distribution.

 In your web browser, visit Download ActiveTcl (as of this
writing, it's version 8.6.9). Make sure to download an 8.6.x

version, not something older! Note that you will need to create

an account with ActiveState (no cost) to download it. After it's

downloaded, run the installer to get Tcl and Tk loaded onto your

machine.

If you're a masochist and want to read about other Tcl/Tk options

and variations and how they interact with Python, see the Mac Tcl/Tk

page at If you want to compile Tcl/Tk from its source, see

Compiling Python

When compiling Python from source, you may need to tell it

where to find the ActiveTcl (or other) distribution. Otherwise, it

might not find any Tcl/Tk distribution (so Tkinter won't work), or

it could find the (ancient and broken) version of Tcl/Tk supplied

with macOS.

 If you're using Python 3.9 or newer, the build system will look

in where ActiveState and other custom builds are typically

installed.

% ./configure

%

make

The initial "%" is the Unix shell prompt; you don't have to type it.

The rest of it should all go on one line without adding line breaks.

When compiling Python versions prior to 3.9, you will need to

add two new command-line options to the initial ./configure in

the Python build process. The first provides the locations of the

Tcl and Tk include files, and the second provides the locations of

the Tcl and Tk libraries. These are usually found in two different

locations (i.e., Tcl.framework and You need to provide both

locations for the include files and both for the libraries. Note the

location of the quotes in the command below and the spaces

separating the Tcl and Tk paths.

% ./configure --with-tcltk-includes="-

I/Library/Frameworks/Tcl.framework/Headers -

I/Library/Frameworks/Tk.framework/Headers" --with-tcltk-

libs="/Library/Frameworks/Tcl.framework/Tcl

/Library/Frameworks/Tk.framework/Tk"

% make

If you have multiple versions of Tcl/Tk installed on your system (and

in the same frameworks), you may need to check inside the

framework to ensure the most recent version is marked as the current

one. If not, you may need to adjust your paths to point to the

specific version (i.e., within each framework.

When everything is built, be sure to test it out. Start Python from

your terminal, e.g.

% ./python.exe

This should give you the Python command prompt. From the

prompt, enter these two commands:

>>> import tkinter

>>>

tkinter._test()

This should pop up a small window; the first line at the top of

the window should say, "This is Tcl/Tk version 8.6"; make sure it

is not 8.4 or 8.5!

Get an error saying No module named tkinter? You're probably using

Python 2. This book assumes Python 3.

You can also get the exact version of Tcl/Tk that is being used

with:

>>> tkinter.Tcl().eval('info patchlevel')

It should return something like '8.6.9'.

Verified install using ActiveTcl 8.6.9.8609.2 and Python 3.90rc1 source

code from python.org on macOS 10.15.6.

3.2. Installing Tk on Windows

Tkinter (and, since Python 3.1, ttk, the interface to the newer

themed widgets) is included in the Python standard library. We

highly recommend installing Python using the standard binary

distributions from These will automatically install Tcl/Tk, which of

course, is needed by Tkinter.

 If you're instead building Python from source code, the Visual

Studio projects included in the "PCbuild" directory can

automatically fetch and compile Tcl/Tk on your system.

 Once you've installed or compiled Python, test it out to make

sure Tkinter works. From the Python prompt, enter these two

commands:

>>> import tkinter

>>>

tkinter._test()

This should pop up a small window; the first line at the top of

the window should say, "This is Tcl/Tk version 8.6"; make sure it

is not 8.4 or 8.5!

Get an error saying No module named tkinter? You're probably using

Python 2. This book assumes Python 3.

You can also get the exact version of Tcl/Tk that is being used

with:

>>> tkinter.Tcl().eval('info patchlevel')

It should return something like '8.6.9'.

Verified using Python 3.9.0rc1 binary installer from python.org

(containing Tcl/Tk 8.6.9) on Windows 10 version 1809.

3.3. Installing Tk on Linux

Tkinter (and, since Python 3.1, ttk, the interface to the newer

themed widgets) is included in the Python standard library. It

relies on Tcl/Tk being installed on your system. Depending on

how you install Python, this may not happen automatically.

Remember, we're using Python 3.x here, not 2.x.

You have several different options to get Python and Tkinter onto

your machine. We'll show you two, using your distro's package

manager, or compiling from source.

Option 1. Your Linux Distribution's Package Manager

Currently supported Linux distributions usually install a recent

version of Python 3.x by default. If not, they have a package

(.deb, .rpm, etc.) that you can install using their package

manager. This is usually the easiest way to install Python.

 However, after you're done installing Python, you should verify

that Tkinter works correctly. Start a Python shell (e.g., and verify

the install (see below).

 You may find that when you try to import tkinter that you get

an error. Sometimes it will tell you that you need to install

another package. If so, follow the instructions, and try again. It

may also just give you Python's standard error message:

ModuleNotFoundError: No module named 'tkinter'.

If you're getting an error saying No module named tkinter (without

the single quotes around the module name), you're probably using

Python 2. This book assumes Python 3.

Sometimes Linux distributions separate out their Tkinter support

into a separate package. That saves installing the Tcl/Tk libraries

for people who are using Python but not Tkinter. If so, you'll

need to find and install this package, which will also ensure that

appropriate versions of the Tcl/Tk libraries are installed on your

system.

 For example, running Ubuntu 20.04LTS, Python 3.8.2 is already

installed. However, to use Tkinter, you need to install a separate

package, named

% sudo apt-get install python3-tk

In this case, that package provides Tcl/Tk 8.6.x libraries to be

used with Python.

Option 2. Install Tcl/Tk and Compile the Standard Python

Distribution

If you'd like to use the standard source distribution from you can

certainly do that.

 But to do so, you'll need to get the Tcl and Tk include files
and libraries loaded on your machine first. Again, while there are

several ways to do the easiest is to download and install

ActiveTcl.

Another option would be to install the Tk development package, e.g.,

via your package manager.

In your web browser, go to Download the latest version of

ActiveTcl for Linux. Make sure you're downloading an 8.6 or

newer version. Note that you will need to create an account with

ActiveState (no cost) to download it. After it's downloaded,

unpack it, run the installer and follow along. You'll end up with a

fresh install of ActiveTcl, located in, e.g.,

 Next, download the current Python 3.x source distribution from

and unpack it. On your configure line, you'll need to tell it how

to find the version of Tcl/Tk you installed. Then build as usual:

% ./configure --with-tcltk-includes='-I/opt/ActiveTcl-8.6/include'

/opt/ActiveTcl-8.6/lib/libtk8.6.so'

%

make

%

make install

If you installed tk8.6-dev via your package manager instead of using

ActiveTcl, the include files should be found in and the libraries

libtcl8.6.so and libtk8.6.so should be in

Make sure to verify your install (see below).

Didn't work? There may have been an error compiling Python's tkinter

code. To check, from the main Python source directory, try touch

Modules/_tkinter.c (note the underscore) and then make to recompile

it. Watch closely for error messages.

The most common thing is that the way you specified the Tcl/Tk

include and libraries needs to be changed somehow. If you get

messages that certain include files can't be found (e.g., you may need

to install additional packages on your Linux distribution (e.g., apt-get

install Once you get it to compile without errors, don't forget to

make

Verifying your Install

At the Python command prompt, enter these two commands:

>>> import tkinter

>>>

tkinter._test()

This should pop up a small window; the first line at the top of

the window should say, "This is Tcl/Tk version 8.6"; make sure it

is not 8.4!

 If it gives you an error when you try to import tkinter (e.g., "If

this fails your Python may not be configured for Tk"), something

hasn't been set up correctly. If you compiled Python yourself, see

above to check for compile errors.

Get an error saying No module named tkinter? You're probably using

Python 2. This book assumes Python 3.

You can also get the exact version of Tcl/Tk that is being used

with:

>>> tkinter.Tcl().eval('info patchlevel')

It should return something like '8.6.9'.

Verified install using ActiveTcl 8.6.9.8609.2 and Python 3.90rc1 source

code from python.org on Ubuntu 20.04LTS.

3.4. The Obligatory First Program

To make sure that everything actually did work, let's try to run a

"Hello World" program in Tk. While for something this short, you

could just type it in directly to the interpreter, instead use your

favorite text editor to put it in a file.

from tkinter import *

from tkinter import ttk

root = Tk()

ttk.Button(root, text="Hello World").grid()

root.mainloop()

 https://tkdocs.com/code/hello.py

Save this to a file named "hello.py". From a command prompt,

type:

% python hello.py

Couldn't find hello.py? You might be looking in the wrong directory.

Try providing the full path to hello.py.

Our first program. Some work left to do before the IPO.

4. A First (Real) Example

With that out of the way, let's try a slightly more substantial

example, which will give you an initial feel for what the code

behind a real Tk program looks like.

4.1. Design

We'll create a simple GUI tool to convert a distance in feet to

the equivalent distance in meters. If we were to sketch this out, it

might look something like this:

A sketch of our feet to meters conversion program.

So it looks like we have a short text entry widget that will let us

type in the number of feet. A "Calculate" button will get the value

out of that entry, perform the calculation, and put the result in a

label below the entry. We've also got three static labels ("feet," "is

equivalent to," and "meters"), which help our user figure out how

to work the application.

 The next thing we need to do is look at the layout. The
widgets we've included seem to be naturally divided into a grid

with three columns and three rows. In terms of layout, things

seem to naturally divide into three columns and three rows, as

illustrated below:

The layout of our user interface, which follows a 3 x 3 grid.

4.2. Code

Now here is the Python code needed to create this entire application

using Tkinter.

from tkinter import *

from tkinter import ttk

def calculate(*args):

 try:

 value = float(feet.get())

 meters.set(int(0.3048 * value * 10000.0 + 0.5)/10000.0)

 except ValueError:

 pass

root = Tk()

root.title("Feet to Meters")

mainframe = ttk.Frame(root, padding="3 3 12 12")

mainframe.grid(column=0, row=0, sticky=(N, W, E, S))

root.columnconfigure(0, weight=1)

root.rowconfigure(0, weight=1)

feet = StringVar()

feet_entry = ttk.Entry(mainframe, width=7, textvariable=feet)

feet_entry.grid(column=2, row=1, sticky=(W, E))

meters = StringVar()

ttk.Label(mainframe, textvariable=meters).grid(column=2, row=2, sticky=

(W, E))

ttk.Button(mainframe, text="Calculate",

command=calculate).grid(column=3, row=3, sticky=W)

ttk.Label(mainframe, text="feet").grid(column=3, row=1, sticky=W)

ttk.Label(mainframe, text="is equivalent to").grid(column=1, row=2,

sticky=E)

ttk.Label(mainframe, text="meters").grid(column=3, row=2, sticky=W)

for child in mainframe.winfo_children():

 child.grid_configure(padx=5, pady=5)

feet_entry.focus()

root.bind("", calculate)

root.mainloop()

 https://tkdocs.com/code/f2m.py

And the resulting user interface:

Screenshot of our completed feet to meters user interface.

A Note on Coding Style

As you know, larger Python programs are almost always structured

into objects, classes, modules, etc. Because the focus of this book is

Tk and Tkinter, we'll keep things as simple as possible, generally

using a very direct and procedural coding style, rather than wrapping

up most of our code in functions or objects.

4.3. Step-by-Step Walkthrough

Let's take a closer look at that code, piece by piece. For now, all

we're trying to do is get a basic understanding of the types of

things we need to do to create a user interface in Tk and roughly

what those things look like. We'll go into details later.

Incorporating Tk

Our program starts by incorporating Tk.

from tkinter import *

from tkinter import ttk

These two lines tell Python that our program needs two modules.

The first, is the standard binding to Tk. When imported, it loads

the Tk library on your system. The second, is a submodule of It

implements Python's binding to the newer "themed widgets" that

were added to Tk in 8.5.

Notice that we've imported everything from the tkinter module. That

way, we can call tkinter functions, etc., without prefixing them with

the module name. This is standard Tkinter practice.

However, because we've imported just ttk itself, we'll need to prefix

anything inside that submodule. For example, calling Entry(...) would

refer to the Entry class inside the tkinter module (classic widgets).

We'd need ttk.Entry(...) to use the Entry class inside ttk (themed

widgets).

As you'll see, several classes are defined in both modules. Sometimes

you will need one or the other, depending on the context. Explicitly

requiring the ttk prefix facilitates this and will be the style used in

this book.

One of the first things you'll find if you're migrating Python 2.x code

is that the name of the Tkinter module is now lowercase, i.e., rather

than In Python 2.x, Ttk was also its own module, not a sub-module

of

Setting up the Main Application Window

Next, the following code sets up the main application window,

giving it the title "Feet to Meters."

root = Tk()

root.title("Feet to Meters")

Yes, the calculate function appeared before this. We'll describe it

below but need to include it near the start because we reference it in

other parts of the program.

Creating a Content Frame

Next, we create a frame widget, which will hold the contents of

our user interface.

mainframe = ttk.Frame(root, padding="3 3 12 12")

mainframe.grid(column=0, row=0, sticky=(N, W, E, S))

root.columnconfigure(0, weight=1)

root.rowconfigure(0, weight=1)

After the frame is created, grid places it directly inside our main

application window. The columnconfigure/rowconfigure bits tell Tk

that the frame should expand to fill any extra space if the

window is resized.

Why do we put a frame inside the main window? Strictly speaking,

we could just put the other widgets in our interface directly into the

main application window without the intervening content frame. That's

what you'll see in older Tk programs.

However, the main window isn't itself part of the newer "themed"

widgets. Its background color doesn't match the themed widgets we

will put inside it. Using a "themed" frame widget to hold the content

ensures that the background is correct. This is illustrated below.

Placing a themed frame inside a window.

On macOS, where this problem is most prominent, you can also set

the window's background color (via its background configuration

option) to the predefined color

Creating the Entry Widget

The first widget we'll create is the entry to input the number of

feet to convert.

feet = StringVar()

feet_entry = ttk.Entry(mainframe, width=7, textvariable=feet)

feet_entry.grid(column=2, row=1, sticky=(W, E))

We need to do two things: create the widget itself and then place

it onscreen.

 When we create a widget, we need to specify its That is the

widget that the new widget will be placed inside. In this case, we

want our entry placed inside the content frame. Our entry, and

other widgets we'll create shortly, are said to be children of the

content frame. The parent is always the first parameter passed

when instantiating a widget object.

 When we create a widget, we can optionally provide it with

certain configuration Here, we specify how wide we want the entry

to appear, i.e., 7 characters. We also assign it a mysterious we'll

see what that does shortly.

 When widgets are created, they don't automatically appear on

the screen; Tk doesn't know where you want them placed relative

to other widgets. That's what the grid part does. Remember the

layout grid when we sketched out our application? Widgets are

placed in the appropriate column (1, 2, or 3) and row (also 1, 2,

or 3).

 The sticky option to grid describes how the widget should line
up within the grid cell, using compass directions. So W (west)

means to anchor the widget to the left side of the cell, (W, E)

(west-east) means to attach it to both the left and right sides,

and so on.

Creating the Remaining Widgets

We then do exactly the same thing for the remaining widgets. We

have one label that will display the resulting number of meters

that we calculate. We have a "Calculate" button that is pressed to

perform the calculation. Finally, we have three static text labels to

make it clear how to use the application. For each of these

widgets, we first create it and then place it onscreen in the

appropriate cell in the grid.

meters = StringVar()

ttk.Label(mainframe, textvariable=meters).grid(column=2, row=2,

sticky=(W, E))

ttk.Button(mainframe, text="Calculate",

command=calculate).grid(column=3, row=3, sticky=W)

ttk.Label(mainframe, text="feet").grid(column=3, row=1, sticky=W)

ttk.Label(mainframe, text="is equivalent to").grid(column=1, row=2,

sticky=E)

ttk.Label(mainframe, text="meters").grid(column=3, row=2, sticky=W)

Adding Some Polish

We then put a few finishing touches on our user interface.

for child in mainframe.winfo_children():

 child.grid_configure(padx=5, pady=5)

feet_entry.focus()

root.bind("", calculate)

The first part walks through all of the widgets contained within

our content frame and adds a little bit of padding around each

so they aren't so scrunched together. (We could have added these

options to each grid call when we first put the widgets onscreen,

but this is a nice shortcut.)

 The second part tells Tk to put the focus on our entry widget.
That way, the cursor will start in that field, so users don't have

to click on it before starting to type.

 The third line tells Tk that if a user presses the Return key
(Enter on Windows), it should call our calculate routine, the same

as if they pressed the Calculate button.

Performing the Calculation

Speaking of which, here we define our calculate procedure. It's

called when a user presses the Calculate button or hits the

Return key. It performs the feet to meters calculation.

def calculate(*args):

 try:

 value = float(feet.get())

 meters.set(int(0.3048 * value * 10000.0 + 0.5)/10000.0)

 except ValueError:

 pass

As you can clearly see, this routine takes the number of feet

from our entry widget, does the calculation, and places the result

in our label widget.

 Say what? It doesn't look like we're doing anything with those
widgets! Here's where the magic textvariable options we specified

when creating the widgets come into play. We specified the global

variable feet as the textvariable for the entry. Whenever the entry

changes, Tk will automatically update the global variable Similarly,

if we explicitly change the value of a textvariable associated with

a widget (as we're doing for meters which is attached to our

label), the widget will automatically be updated with the current

contents of the variable. The only caveat is that these variables

must be an instance of the StringVar class. Slick.

The multiplying and dividing by 10000.0 is to avoid the rounding

problems inherent in floating-point math. A simple calculation, e.g.,

could result in a number like which would neither be correct or

visually appealing when displayed. You could also use Python's built-in

round() function.

Start the Event Loop

Finally, we need to tell Tk to enter its event loop, which is

necessary for everything to appear onscreen and allow users to

interact with it.

root.mainloop()

4.4. What's Missing

We've now seen how to create widgets, put them onscreen, and

respond to users interacting with them. It's certainly not fancy,

could probably do with some error checking, but it's a fully

functional GUI application.

 It's also worth examining what we didn't have to include in our

Tk program to make it work. For example:

we didn't have to worry about redrawing the screen as things

changed

we didn't have to worry about parsing and dispatching events, hit

detection, or handling events on each widget

we didn't have to provide a lot of options when we created

widgets; the defaults seemed to take care of most things, and so

we only had to change things like the text the button displayed

we didn't have to write complex code to get and set the values

of simple widgets; we just attached them to variables

we didn't have to worry about what happens when users close

the window or resizes it

we didn't need to write extra code to get this all to work cross-

platform

One More Thing...

As this book emphasizes Tkinter, our examples use standalone

script code, global variables, and simple functions. In practice,

you'll likely organize anything beyond the simplest scripts in

functions or classes. There are different ways to do this: using

modules, creating classes for different parts of the user interface,

inheriting from Tkinter classes, etc.

 Often though, you just want to do something simple to

encapsulate your data rather than putting everything into the

global variable space. Here is the feet to meters example,

rewritten to encapsulate the main code into a class. Note the use

of self on callbacks (which execute at the global scope) and

from tkinter import *

from tkinter import ttk

class FeetToMeters:

 def __init__(self, root):

 root.title("Feet to Meters")

 mainframe = ttk.Frame(root, padding="3 3 12 12")

 mainframe.grid(column=0, row=0, sticky=(N, W, E, S))

 root.columnconfigure(0, weight=1)

 root.rowconfigure(0, weight=1)

 self.feet = StringVar()

 feet_entry = ttk.Entry(mainframe, width=7,

textvariable=self.feet)

 feet_entry.grid(column=2, row=1, sticky=(W, E))

 self.meters = StringVar()

 ttk.Label(mainframe,

textvariable=self.meters).grid(column=2, row=2, sticky=(W, E))

 ttk.Button(mainframe, text="Calculate",

command=self.calculate).grid(column=3, row=3, sticky=W)

 ttk.Label(mainframe, text="feet").grid(column=3, row=1,

sticky=W)

 ttk.Label(mainframe, text="is equivalent to").grid(column=1,

row=2, sticky=E)

 ttk.Label(mainframe, text="meters").grid(column=3, row=2,

sticky=W)

 for child in mainframe.winfo_children():

 child.grid_configure(padx=5, pady=5)

 feet_entry.focus()

 root.bind("", self.calculate)

 def calculate(self, *args):

 try:

 value = float(self.feet.get())

 self.meters.set(int(0.3048 * value * 10000.0 +

0.5)/10000.0)

 except ValueError:

 pass

root = Tk()

FeetToMeters(root)

root.mainloop()

 https://tkdocs.com/code/f2mo.py

5. Tk Concepts

With your first example behind you, you now have a basic idea

of what a Tk program looks like and the type of code you need

to write to make it work. This chapter will step back and look at

three broad concepts required to understand Tk: widgets, geometry

management, and event handling.

5.1. Widgets

Widgets are all the things that you see onscreen. Our example had a

button, an entry, a few labels, and a frame. Checkboxes, tree views,

scrollbars, and text areas are examples of other widgets. Widgets are

often referred to as "controls." You'll also sometimes see them

referred to as "windows," particularly in Tk's documentation. This is

a holdover from its X11 roots (under that terminology, both your

toplevel application window and a button would be called windows).

 Here is an example showing some of Tk's widgets, which we'll

cover individually shortly.

Several Tk Widgets.

Widget Classes

Widgets are objects, instances of classes that represent buttons,

frames, and so on. When you want to create a widget, the first

thing you'll need to do is identify the specific class of the widget

you'd like to instantiate. This book will help with that.

Widget Hierarchy

Besides the widget class, you'll need one other piece of information

to create it: its Widgets don't float off in space. Instead, they're

contained within something else, like a window. In Tk, all widgets

are part of a widget (or window) with a single root at the top of the

hierarchy.

 In our metric conversion example, we created a single frame as a

child of the root window, and that frame had all the other controls

as children. The root window was a container for the frame and was,

therefore, the frame's The complete hierarchy for the example looked

like this:

The widget hierarchy of the metric conversion example.

This hierarchy can be arbitrarily deep, so you might have a button

in a frame in another frame within the root window. Even a new

window in your application (often called a is part of that same

hierarchy. That window and all its contents form a subtree of the

overall widget hierarchy.

Hierarchy of a more substantial application. Leaf nodes (buttons, labels,

etc.) omitted.

Creating Widgets

Each separate widget is a Python object. When instantiating a widget,

you must pass its parent as a parameter to the widget class. The

only exception is the "root" window, the toplevel window containing

everything else. That is automatically created when you instantiate It

does not have a parent. For example:

root = Tk()

content = ttk.Frame(root)

button = ttk.Button(content)

Whether or not you save the widget object in a variable is entirely

up to you, depending on whether you'll need to refer to it later.

Because the object is inserted into the widget hierarchy, it won't be

garbage collected even if you don't keep your own reference to it.

If you sneak a peek at how Tcl manages widgets, you'll see each widget

has a specific pathname; you'll also see this pathname referred to in Tk

reference documentation. Tkinter chooses and manages all these

pathnames for you behind the scenes, so you should never have to worry

about them. If you do, you can get the pathname from a widget by

calling

Configuration Options

All widgets have several configuration options that control how the

widget is displayed or how it behaves.

 The available options for a widget depend upon the widget class,
of course. There is a lot of consistency between different widget

classes, so options that do similar things tend to be named the

same. For example, both a button and a label have a text option to

adjust the text that the widget displays, while a scrollbar would not

have a text option since it's not needed. Similarly, the button has a

command option telling it what to do when pushed, while a label,

which holds just static text, does not.

 Configuration options can be set when the widget is first created
by specifying their names and values as optional parameters. Later,

you can retrieve the current values of those options, and with a tiny

number of exceptions, change them at any time.

 If you're unsure what configuration options a widget supports, you
can ask the widget to describe them. This gives you a long list of

all its options.

 This is all best illustrated with the following interactive dialog with
the interpreter.

% python

>>>

from tkinter import *

>>>

from tkinter import ttk

>>>

root = Tk() create a button, passing two options:

>>>

button = ttk.Button(root, text="Hello", command="buttonpressed")

>>>

button.grid() check the current value of the text option:

>>>

button['text']

'Hello'

change the value of the text option:

>>>

button['text'] = 'goodbye' another way to do the same thing:

>>>

button.configure(text='goodbye') check the current value of the text

option:

>>>

button['text']

'goodbye'

get all information about the text option:

>>>

button.configure('text')

('text', 'text', 'Text', '', 'goodbye')

get information on all options for this widget:

>>>

button.configure()

{'cursor': ('cursor', 'cursor', 'Cursor', '', ''), 'style': ('style', 'style', 'Style',

'', ''),

'default': ('default', 'default', 'Default', object at 0x00DFFD10>, object

at 0x00DFFD10>),

'text': ('text', 'text', 'Text', '', 'goodbye'), 'image': ('image', 'image',

'Image', '', ''),

'class': ('class', '', '', '', ''), 'padding': ('padding', 'padding', 'Pad', '', ''),

'width': ('width', 'width', 'Width', '', ''),

'state': ('state', 'state', 'State', object at 0x0167FA20>, object at

0x0167FA20>),

'command': ('command', 'command' , 'Command', '', 'buttonpressed'),

'textvariable': ('textvariable', 'textVariable', 'Variable', '', ''),

'compound': ('compound', 'compound', 'Compound', object at

0x0167FA08>, object at 0x0167FA08>),

'underline': ('underline', 'underline', 'Underline', -1, -1),

'takefocus': ('takefocus', 'takeFocus', 'TakeFocus', '', 'ttk::takefocus')}

As you can see, for each option, Tk will show you the name of the

option and its current value (along with three other attributes which

you can usually ignore).

Ok, if you really want to know, here are the details on the five pieces of

data provided for each configuration option. The most useful are the first,

the option's name, and the fifth, which is the option's current value. The

fourth is the default value of the option, or in other words, the value it

would have if you didn't change it. The other two relate to something

called the option database. We'll touch on it when we discuss menus,

but it's not used in modern applications. The second item is the option's

name in the database, and the third is its class.

Widget Introspection

Tk exposes a treasure trove of information about each and every

widget that your application can take advantage of. Much of it is

available via the winfo facility; see the winfo command reference for

full details.

 https://tkdocs.com/man/winfo

This short example traverses the widget hierarchy, using each widget's

winfo_children method to identify child widgets that need to be

examined. For each widget, we print some basic information,

including its class (button, frame, etc.), width, height, and position

relative to its parent.

def print_hierarchy(w, depth=0):

 print(' '*depth + w.winfo_class() + ' w=' + str(w.winfo_width())

+ ' h=' + str(w.winfo_height()) + ' x=' + str(w.winfo_x()) + ' y=' +

str(w.winfo_y()))

 for i in w.winfo_children():

 print_hierarchy(i, depth+1)

print_hierarchy(root)

The following are some of the most useful methods:

winfo_class: a class identifying the type of widget, e.g., TButton for a

themed button winfo_children: a list of widgets that are the direct

children of a widget in the hierarchy winfo_parent: parent of the

widget in the hierarchy winfo_toplevel: the toplevel window containing

this widget winfo_width, winfo_height: current width and height of

the widget; not accurate until it appears onscreen winfo_reqwidth,

winfo_reqheight: the width and height that the widget requests of the

geometry manager (more on this shortly) winfo_x, winfo_y: the

position of the top-left corner of the widget relative to its parent

winfo_rootx, winfo_rooty: the position of the top-left corner of the

widget relative to the entire screen winfo_vieweable: whether the

widget is displayed or hidden (all its ancestors in the hierarchy must

be viewable for it to be viewable)

5.2. Geometry Management

If you've been running code interactively, you've probably noticed

that widgets don't appear on the screen just by creating them.

Placing widgets on the screen (and precisely where they are

placed) is a separate step called geometry

 In our example, positioning each widget was accomplished by

the grid command. We specified the column and row we wanted

each widget to go in, how things were aligned within the grid,

etc. Grid is an example of a geometry manager (of which there are

several in Tk, grid being the most useful). For now, we'll look at

geometry management in general; we'll talk about grid in a later

chapter.

 A geometry manager's job is to figure out exactly where those

widgets are going to be put. This turns out to be a complex

optimization problem, and a good geometry manager relies on

quite sophisticated algorithms. A good geometry manager provides

the flexibility, power, and ease of use that makes programmers

happy. It also makes it easy to create appealing user interface

layouts without needing to jump through hoops. Tk's grid is,

without a doubt, one of the absolute best. A poor geometry

manager... well, all the Java programmers who have suffered

through "GridBagLayout" please raise their hands.

We'll go into more detail in a later chapter, but grid was introduced

several years after Tk became popular. Before that, an older geometry

manager named pack was most commonly used. It's equally powerful

but much harder to use, making it onerous to create layouts that

look appealing today. Unfortunately, much of the example Tk code

and documentation out there uses pack instead of grid (a good clue

to how current it is). The widespread use of pack is a leading reason

that so many Tk user interfaces look terrible. Start new code with

and upgrade old code when you can.

The Problem

The problem for a geometry manager is to take all the different

widgets the program creates, plus the program's instructions for

where in the window each should go (explicitly, or more often,

relative to other widgets), and then actually position them in the

window.

 In doing so, the geometry manager has to balance multiple

constraints. Consider these situations:

The widgets may have a natural size, e.g., the natural width of a

label would depend on the text it displays and the font used to

display it. What if the application window containing all these

different widgets isn't big enough to accommodate them? The

geometry manager must decide which widgets to shrink to fit, by

how much, etc.

If the application window is bigger than the natural size of all

the widgets, how is the extra space used? Is extra space placed

between each widget, and if so, how is that space distributed? Is

it used to make certain widgets larger than they usually are, such

as a text entry growing to fill a wider window? Which widgets

should grow?

If the application window is resized, how does the size and

position of each widget inside it change? Will certain areas (e.g.,

a text entry area) expand or shrink while other parts stay the

same size, or is the area distributed differently? Do certain

widgets have a minimum size that you want to avoid going

below? A maximum size? Does the window itself have a minimum

or maximum size?

How can widgets in different parts of the user interface be

aligned with each other? How much space should be left between

them? This is needed to present a clean layout and comply with

platform-specific user interface guidelines.

For a complex user interface, which may have many frames

nested in other frames nested in the window (etc.), how can all

the above be accomplished, trading off the conflicting demands of

different parts of the entire user interface?

How it Works

Geometry management in Tk relies on the concept of master and

slave widgets. A master is a widget, typically a toplevel application

window or a frame. It contains other widgets, called slaves. You

can think of a geometry manager taking control of the master

widget and deciding how all the slave widgets will be displayed

within.

The computing community has embraced the more general societal

trend towards more diversity, sensitivity, and awareness about the

impacts of language. As a result, the Tk core will slowly adopt a

more inclusive set of terminology. For example, where it makes sense,

"parent" and "child" will be preferred over "master" and "slave." The

current terminology will not disappear to preserve backward

compatibility. This is something to be aware of for the future. For

more details, see TIP #581

Your program tells the geometry manager what slaves to manage

within the master, i.e., via calling Your program also provides

hints as to how it would like each slave to be displayed, e.g., via

the column and row options. You can also provide other things

to the geometry manager. For example, we used columnconfigure

and rowconfigure to indicate the columns and rows we'd like to

expand if extra space is available in the window. It's worth noting

that all these parameters and hints are specific to other geometry

managers would use different ones.

 The geometry manager collects information about the slaves in

the master and the total size of the master. It asks each slave

widget for its natural size, i.e., how large it would ideally be

displayed. The geometry manager's internal algorithm calculates

the area each slave will be allocated (if any!). The slave is then

responsible for rendering itself within that particular rectangle.

And of course, we repeat the whole thing whenever the size of

the master changes (e.g., because the toplevel window was

resized), the natural size of a slave changes (e.g., because we've

changed the text in a label), or any geometry manager parameters

change (e.g., like or

 This all works recursively as well. In our example, we had a

content frame inside the toplevel application window and then

several other widgets inside the content frame. We, therefore, had

to manage the geometry for two different masters. At the outer

level, the toplevel window was the master, and the content frame

was its slave. At the inner level, the content frame was the

master, with each of the other widgets being slaves. Notice that

the same widget, e.g., the content frame, can be both a master

and a slave! As we saw previously, this widget hierarchy can be

nested much more deeply.

While each master can be managed by only one geometry manager

(e.g., different masters can have different geometry managers. While

grid is the right choice most of the time, others may make sense for

a particular layout used in one part of your user interface. Other Tk

geometry managers include which we've mentioned, and which leaves

all layout decisions entirely up to you. Some complex widgets like

canvas and text let you embed other widgets, making them de facto

geometry managers.

Finally, we've been assuming that slave widgets are the immediate

children of their master in the widget hierarchy. While this is usually

the case, and mostly there's no good reason to do it any other way,

it's also possible (with some restrictions) to get around this.

5.3. Event Handling

As with most user interface toolkits, Tk runs an event loop that

receives events from the operating system. These are things like

button presses, keystrokes, mouse movement, window resizing,

and so on.

 Generally, Tk takes care of managing this event loop for you. It

will figure out what widget the event applies to (did a user click

on this button? if a key was pressed, which textbox had the

focus?), and dispatch it accordingly. Individual widgets know how

to respond to events; for example, a button might change color

when the mouse moves over it and revert back when the mouse

leaves.

It's critical in event-driven applications that the event loop not be The

event loop should run continuously, normally executing dozens of steps

per second. At every step, it processes an event. If your program is

performing a long operation, it can potentially block the event loop.

In that case, no events would be processed, no drawing would be

done, and it would appear as if your application is frozen. There are

many ways to avoid this happening, mostly related to the structure of

your application. We'll discuss this in more detail in a later chapter.

Command Callbacks

You often want your program to handle some event in a

particular way, e.g., do something when a button is pushed. For

those events that are most frequently customized (what good is a

button without something happening when you press it?), the

widget will allow you to specify a callback as a widget

configuration option. We saw this in the example with the

command option of the button.

def calculate(*args):

 ...

ttk.Button(mainframe, text="Calculate", command=calculate)

Callbacks in Tk tend to be simpler than in user interface toolkits

used with compiled languages (where a callback must be a

procedure with a certain set of parameters or an object method

with a certain signature). Instead, the callback is just an ordinary

bit of code that the interpreter evaluates. While it can be as

complicated as you want to make it, most of the time, you'll just

want your callback to call some other procedure.

Binding to Events

For events that don't have a widget-specific command callback

associated with them, you can use Tk's bind to capture any event

and then (like with callbacks) execute an arbitrary piece of code.

 Here's a (silly) example showing a label responding to different

events. When an event occurs, a description of the event is

displayed in the label.

from tkinter import *

from tkinter import ttk

root = Tk()

l =ttk.Label(root, text="Starting...")

l.grid()

l.bind('', lambda e: l.configure(text='Moved mouse inside'))

l.bind('', lambda e: l.configure(text='Moved mouse outside'))

l.bind('', lambda e: l.configure(text='Clicked left mouse button'))

l.bind('<3>', lambda e: l.configure(text='Clicked right mouse

button'))

l.bind('', lambda e: l.configure(text='Double clicked'))

l.bind('', lambda e: l.configure(text='right button drag to %d,%d' %

(e.x, e.y)))

root.mainloop()

 https://tkdocs.com/code/bindings.py

The first two bindings are pretty straightforward, just watching for

simple events. An event means the mouse has moved over top

the widget, while the event is generated when the mouse moves

outside the widget to a different one.

 The next binding looks for a mouse click, specifically a event.

Here, the is the actual event, but the -1 is an event detail

specifying the left (main) mouse button on the mouse. The

binding will only trigger when a event is generated involving the

main mouse button. If another mouse button was clicked, this

binding would ignore it.

 This next binding looks for a <3> event. This is actually a
shorthand for It will respond to events generated when the right

mouse button is clicked. The next binding, (shorthand for adds

another modifier, and so will respond to the left mouse button

being double-clicked.

 The last binding also uses a modifier: capture mouse

movement but only when the right mouse button is held down.

This binding also shows an example of how to use event Many

events carry additional information, e.g., the position of the

mouse when it's clicked. Tk provides access to these parameters

in Tcl callback scripts through the use of percent These percent

substitutions let you capture them so they can be used in your

script.

 Tkinter abstracts away these percent substitutions and instead
encapsulates all the event parameters in an event object. Above,

we used the x and y fields to retrieve the mouse position. We'll

see percent substitutions used later in another context, entry

widget validation.

What's with the lambda expressions? Tkinter expects you to provide a

function as the event callback, whose first argument is an event object

representing the event that triggered the callback. It's sometimes not

worth the bother of defining regular named functions for one-off trivial

callbacks, such as in this example. Instead, we've just used Python's

anonymous functions via In real applications, you'll almost always use

a regular function, such as the calculate function in our feet to

meters example, or a method of an object.

Multiple Bindings for an Event

We've just seen how event bindings can be set up for an

individual widget. When a matching event is received by that

widget, the binding will trigger. But that's not all you can do.

 Your binding can capture not only a single event but a short
sequence of events. The binding triggers when two mouse clicks

occur in a short time. You can do the same thing to capture two

keys pressed in a row, e.g., or simply

 You can also set up an event binding on a toplevel window.
When a matching event occurs anywhere in that window, the

binding will be triggered. In our example, we set up a binding for

the Return key on the main application toplevel window. If the

Return key was pressed when any widget in the toplevel window

had the focus, that binding would fire.

 Less commonly, you can create event bindings triggered when a

matching event occurs anywhere in the application or even for

events received by any widget of a given class, e.g., all buttons.

More than one binding can fire for an event. This keeps event

handlers concise and limited in scope, meaning more modular code.

For example, the behavior of each widget class in Tk is itself defined

with script-level event bindings. These stay separate from event

bindings in your application. Event bindings can also be changed or

deleted. They can be modified to alter event handling for widgets of a

certain class or parts of your application. You can reorder, extend, or

change the sequence of event bindings that will be triggered for each

widget; see the bindtags command reference if you're curious.

 https://tkdocs.com/man/bindtags

Available Events

The most commonly used events are described below, along with

the circumstances when they are generated. Some are generated

on some platforms and not others. For a complete description of

all the different event names, modifiers, and the different event

parameters that are available with each, the best place to look is

the bind command reference.

 https://tkdocs.com/man/bind

: Window has become active. : Window has been deactivated. :

Scroll wheel on mouse has been moved. : Key on keyboard has

been pressed down. : Key has been released. : A mouse button

has been pressed. : A mouse button has been released. : Mouse

has been moved. : Widget has changed size or position. : Widget

is being destroyed. : Widget has been given keyboard focus. :

Widget has lost keyboard focus. : Mouse pointer enters widget. :

Mouse pointer leaves widget.

Event detail for mouse events is the button that was pressed,

e.g., or For keyboard events, it's the specific key, e.g., A complete

list can be found in the keysyms command reference.

 https://tkdocs.com/man/keysyms

Event modifiers can include, e.g., B1 or Button1 to signify the

main mouse button being held down, Double or Triple for

sequences of the same event. Key modifiers for when keys on the

keyboard are held down inline and

Virtual Events

The events we've seen so far are low-level operating system events

like mouse clicks and window resizes. Many widgets also generate

higher-level, semantic events called virtual These are indicated by

double angle brackets around the event name, e.g.,

 For example, a listbox widget will generate a <> virtual event

whenever its selection changes. The same virtual event is

generated whether a user clicked on an item, moved to it using

the arrow keys, or another way. Virtual events avoid the problem

of setting up multiple, possibly platform-specific event bindings to

capture common changes. The available virtual events for a

widget will be listed in the documentation for the widget class.

 Tk also defines virtual events for common operations that are

triggered in different ways for different platforms. These include

<> and

 You can define your own virtual events, which can be specific
to your application. This can be a useful way to keep platform-

specific details isolated in a single module while using the virtual

event throughout your application. Your own code can generate

virtual events that work in exactly the same way that virtual

events generated by Tk do.

6. Basic Widgets

This chapter introduces the basic Tk widgets that you'll find in

just about any user interface: frames, labels, buttons,

checkbuttons, radiobuttons, entries, and comboboxes. By the end,

you'll know how to use all the widgets you'd ever need for a

typical fill-in-the-form type of user interface.

 You'll find it easiest to read this chapter (and those following
that discuss more widgets) in order. Because there is so much

commonality between many widgets, we'll introduce certain

concepts when describing one widget that will also apply to a

widget we describe later. Rather than going over the same ground

multiple times, we'll refer back to when the concept was first

introduced.

 At each widget is introduced, we'll note the Tkinter class used
to create the widget and its Tk reference manual Even though

this reference documentation refers to the Tcl interface to Tk, it is

the most accurate and complete description of each Tk widget.

The internals of Python's Tkinter module directly rely on this Tcl

interface. As a reminder, this book highlights the most useful parts

of Tk and how to use them to build effective modern user

interfaces. The reference documentation, which details everything

that can be done in Tk, serves a very different purpose.

6.1. Frame

 ttk.Frame

 https://tkdocs.com/man/ttk_frame

A frame is a widget that displays as a simple rectangle. Frames

help to organize your user interface, often both visually and at

the coding level. Frames often act as master widgets for a

geometry manager like which manages the slave widgets contained

within the frame.

Frame widgets.

Frames are created using the ttk.Frame class:

frame =

Frames can take several different configuration options, which can

alter how they are displayed.

Requested Size

Typically, the size of a frame is determined by the size and layout

of any widgets within it. In turn, this is controlled by the

geometry manager that manages the contents of the frame itself.

 If, for some reason, you want an empty frame that does not

contain other widgets, you can instead explicitly set its size using

the width and/or height configuration options (otherwise, you'll

end up with a very small frame indeed).

 Screen distances such as width and height are usually specified
as a number of pixels screen. You can also specify them via one

of several suffixes. For example, 350 means 350 pixels, 350c

means 350 centimeters, 350m means 350 millimeters, 350i means

350 inches, and 350p means 350 printer's points (1/72 inch).

Remember, you can request a given size for a frame (or any widget),

but the geometry manager has the final say. If things aren't showing

up the way you want them, make sure to check there too.

Padding

The padding configuration option is used to request extra space

around the inside of the widget. If you're putting other widgets

inside the frame, there will be a margin all the way around. You

can specify the same padding for all sides, different horizontal

and vertical padding, or padding for each side separately.

f['padding'] = 5 # 5 pixels on all sides

f['padding'] = (5,10)

5 on left and right, 10 on top and bottom

f['padding'] = (5,7,10,12)

left: 5, top: 7, right: 10, bottom: 12

Borders

You can display a border around a frame widget to visually

separate it from its surroundings. You'll see this often used to

make a part of the user interface look sunken or raised. To do

this, you need to set the borderwidth configuration option (which

defaults to 0, i.e., no border) and the relief option, which

specifies the visual appearance of the border. This can be one of:

flat (default), or

frame['borderwidth'] = 2

frame['relief '] = 'sunken'

Changing Styles

Frames have a style configuration option, which is common to all

of the themed widgets. This lets you control many other aspects

of their appearance or behavior. This is a bit more advanced, so

we won't go into it in too much detail right now. But here's a

quick example of creating a "Danger" frame with a red

background and a raised border.

s = ttk.Style()

s.configure('Danger.TFrame', background='red', borderwidth=5,

relief='raised')

ttk.Frame(root, width=200, height=200, style='Danger.TFrame').grid()

What elements of widgets can be changed by styles vary by widget

and platform. On Windows and Linux, it does what you'd expect. On

current macOS, the frame will have a red raised border, but the

background will remain the default grey. Much more on why this is in

a later chapter.

Styles mark a sharp departure from how most aspects of a widget's

visual appearance were changed in the "classic" Tk widgets. In classic

Tk, you could provide a wide range of options to finely control every

aspect of an individual widget's behavior, e.g., foreground color,

background color, font, highlight thickness, selected foreground color,

and padding. When using the new themed widgets, these changes are

made by modifying styles, not adding options to each widget.

As such, many options you may be familiar with in certain classic

widgets are not present in their themed version. However, overuse of

such options was a key factor undermining the appearance of Tk

applications, especially when used across different platforms.

Transitioning from classic to themed widgets provides an opportune

time to review and refine how (and if!) such appearance changes are

made.

6.2. Label

 ttk.Label

 https://tkdocs.com/man/ttk_label

A label is a widget that displays text or images, typically that

users will just view but not otherwise interact with. Labels are

used to identify controls or other parts of the user interface,

provide textual feedback or results, etc.

Label widgets.

Labels are created using the ttk.Label class. Often, the text or

image the label will display are specified via configuration options

at the same time:

label = text='Full name:')

Like frames, labels can take several different configuration options,

which can alter how they are displayed.

Displaying Text

The text configuration option (shown above when creating the

label) is the most commonly used, particularly when the label is

purely decorative or explanatory. You can change what text is

displayed by modifying this configuration option. This can be

done at any time, not only when first creating the label.

 You can also have the widget monitor a variable in your script.

Anytime the variable changes, the label will display the new value

of the variable. This is done with the textvariable option:

resultsContents = StringVar()

label['textvariable'] = resultsContents

resultsContents.set('New value to display')

Tkinter only allows you to attach widgets to an instance of the

StringVar class but not arbitrary Python variables. This class

contains all the logic to watch for changes and communicate

them back and forth between the variable and Tk. Use the get

and set methods to read or write the current value of the

variable.

Displaying Images

Labels can also display an image instead of text. If you just want

an image displayed in your user interface, this is normally the

way to do it. We'll go into images in more detail in a later

chapter, but for now, let's assume you want to display a GIF

stored in a file on disk. This is a two-step process. First, you will

create an image "object." Then, you can tell the label to use that

object via its image configuration option:

image = PhotoImage(file='myimage.gif ')

label['image'] = image

Labels can also display both an image and text at the same time.

You'll often see this in toolbar buttons. To do so, use the

compound configuration option. The default value is meaning

display only the image if present; if there is no image, display the

text specified by the text or textvariable options. Other possible

values for the compound option are text (text only), image (image

only), center (text in the center of image), top (image above text),

and

Fonts, Colors, and More

Like with frames, you normally don't want to change things like

fonts and colors directly. If you need to change them (e.g., to

create a special type of label), the preferred method would be to

create a new style, which is then used by the widget with the

style option.

 Unlike most themed widgets, the label widget also provides

explicit widget-specific configuration options as an alternative.

Again, you should use these only in special one-off cases when

using a style doesn't necessarily make sense.

 You can specify the font used to display the label's text using
the font configuration option. While we'll go into fonts in more

detail in a later chapter, here are the names of some predefined

fonts you can use:

TkDefaultFont: Default for all GUI items not otherwise specified.

TkTextFont: Used for entry widgets, listboxes, etc. TkFixedFont: A

standard fixed-width font. TkMenuFont: The font used for menu

items. TkHeadingFont: A font for column headings in lists and

tables. TkCaptionFont: A font for window and dialog caption bars.

TkSmallCaptionFont: Smaller captions for subwindows or tool

dialogs. TkIconFont: A font for icon captions. TkTooltipFont: A

font for tooltips.

Because font choices are platform-specific, be careful of hardcoding

specifics (font families, sizes, etc.). This is something else you'll see in

many older Tk programs that can make them look ugly.

label['font'] = "TkDefaultFont"

The foreground (text) and background color of the label can also

be changed via the foreground and background configuration

options. Colors are covered in detail later, but you can specify

them as either color names (e.g., or hex RGB codes (e.g.,

 Labels also accept the relief configuration option discussed for
frames to make them appear sunken or raised.

Layout

The geometry manager determines the overall layout of the label

(i.e., where it is positioned within the user interface and how

large it is). Yet, several options can help you control how the

label is displayed within the rectangle the geometry manager gives

it.

 If the box given to the label is larger than the label requires
for its contents, you can use the anchor option to specify what

edge or corner the label should be attached to, which would

leave any empty space in the opposite edge or corner. Possible

values are specified as compass directions: n (north, or top

edge), (north-east, or top right corner), nw or

Things not appearing where you think they should? It may be that

the geometry manager is not putting the label where you think it is.

For example, if you're using you may need to adjust the sticky

options. When debugging, it can help to change the background color

of each widget so you know exactly where each is positioned. This is

a good example of those "one-off " cases we just mentioned where you

might use configuration options rather than styles to modify

appearance.

Multi-line Labels

Labels can display more than one line of text. To do so, embed

carriage returns in the text (or string. Labels can also

automatically wrap your text into multiple lines via the wraplength

option, which specifies the maximum length of a line (in pixels,

centimeters, etc.).

Multi-line labels are a replacement for the older message widgets in

classic Tk.

You can also control how the text is justified via the justify

option. It can have the values or If you have only a single line

of text, you probably want the anchor option instead.

6.3. Button

 ttk.Button

 https://tkdocs.com/man/ttk_button

A unlike a frame or label, is very much there to interact with.

Users press a button to perform an action. Like labels, they can

display text or images but accept additional options to change

their behavior.

Button widgets.

Buttons are created using the ttk.Button class:

button = text='Okay', command=submitForm)

Typically, their contents and command callback are specified at

the same time the button is created. As with other widgets,

buttons accept several configuration options to alter their

appearance and behavior, including the standard style option.

Text or Image

Buttons take the same textvariable (rarely used), and compound

configuration options as labels. These control whether the button

displays text and/or an image.

 Buttons have a default configuration option. If specified as this
tells Tk that the button is the default button in the user interface;

otherwise, it is Default buttons are invoked if users hit the Return

or Enter key). Some platforms and styles will draw this default

button with a different border or highlight. Note that setting this

option doesn't create an event binding that will make the Return

or Enter key activate the button; you have to do that yourself.

The Command Callback

The command option connects the button's action and your

application. When a user presses the button, the script provided

by the option is evaluated by the interpreter.

 You can also ask the button to invoke the command callback

from your application. That way, you don't need to repeat the

command to be invoked several times in your program. If you

change the command attached to the button, you don't need to

change it elsewhere too. Sounds like a useful way to add that

event binding on our default button, doesn't it?

action = ttk.Button(root, text="Action", default="active",

command=myaction)

root.bind('', lambda e: action.invoke())

Standard behavior for dialog boxes and many other windows on most

platforms is to set up a binding on the window for the Return key or

to invoke the active button if it exists, as we've done here. If there is

a "Close" or "Cancel" button, create a binding to the Escape key On

macOS, you should additionally bind the Enter key on the keyboard

to the active button and Command-period to the close or cancel

button.

Button State

Buttons and many other widgets start off in a normal state. A

button will respond to mouse movements, can be pressed, and

will invoke its command callback. Buttons can also be put into a

disabled state, where the button is greyed out, does not respond

to mouse movements, and cannot be pressed. Your program

would disable the button when its command is not applicable at

a given point in time.

 All themed widgets maintain an internal state, represented as a

series of binary flags. Each flag can either be set (on) or cleared

(off). You can set or clear these different flags, and check the

current setting using the state and instate methods. Buttons make

use of the disabled flag to control whether or not users can

press the button. For example:

b.state(['disabled']) # set the disabled flag

b.state(['!disabled'])

clear the disabled flag

b.instate(['disabled'])

true if disabled, else false

b.instate(['!disabled'])

true if not disabled, else false

b.instate(['!disabled'], cmd)

execute 'cmd' if not disabled

Note that these commands accept an array of state flags as their

argument.

The full list of state flags available to themed widgets is: and

These are described in the themed widget While all widgets have

the same set of state flags, not all states are meaningful for all

widgets. It's also possible to get fancy in the state and instate

methods and specify multiple state flags at the same time.

 https://tkdocs.com/man/ttk_widget

The state and instate methods replace the older state configuration

option (which took the values normal or

That configuration option is actually still available for themed widgets

in Tk 8.5, but "write-only," which means that changing the option

calls the appropriate state command. It's mainly intended as a

convenience, so you can specify a widget should be disabled when you

first create it. However, any changes made using the new state

command do not update the configuration option. To avoid confusion,

update your code to use the state flags for all themed widgets.

6.4. Checkbutton

 ttk.Checkbutton

 https://tkdocs.com/man/ttk_checkbutton

A checkbutton widget is like a regular button that also holds a

binary value of some kind (i.e., a toggle). When pressed, a

checkbutton flips the toggle and then invokes its callback.

Checkbutton widgets are frequently used to allow users to turn an

option on or off.

Checkbutton widgets.

Checkbuttons are created using the ttk.Checkbutton class. Typically,

their contents and behavior are specified at the same time:

measureSystem = StringVar()

check = ttk.Checkbutton(

parent

, text='Use Metric',

 command=metricChanged, variable=measureSystem,

 onvalue='metric', offvalue='imperial')

Checkbuttons use many of the same options as regular buttons

but add a few more. The and compound configuration options

control the display of the label (next to the checkbox itself).

Similarly, the command option lets you specify a command to be

called every time a user toggles the checkbutton; and the invoke

method will also execute the same command. The state and

instate methods allow you to manipulate the disabled state flag

to enable or disable the checkbutton.

Widget Value

Unlike regular buttons, checkbuttons also hold a value. We've

seen how the textvariable option links the label of a widget to a

variable. The variable option for checkbuttons behaves similarly,

except it links a variable to the widget's current value. The

variable is updated whenever the widget is toggled. By default,

checkbuttons use a value of 1 when checked and 0 when not

checked. These can be changed to something else using the

onvalue and offvalue options.

 A checkbutton doesn't automatically set (or create) the linked

variable. Therefore, your program needs to initialize it to the

appropriate starting value.

 What happens when the linked variable contains neither the

onvalue or the offvalue (or even doesn't exist)? In that case, the

checkbutton is put into a special "tristate" or indeterminate mode.

The checkbox might display a single dash in this mode instead of

being empty or holding a checkmark. Internally, the state flag

alternate is set, which you can inspect via the instate method:

check.instate(['alternate'])

While we've been using an instance of the StringVar class, Tkinter

provides other variable classes that can hold booleans, integers,

or floating-point numbers. You can always use a StringVar

(because the Tcl API that Tkinter uses is string-based) but can

choose one of the others if the data stored in it fits the type. All

are subclasses of the base class

 In the feet to meters example, we saw that you can call the

get method of a Variable to retrieve its value or the set method

to provide a new value. You can also supply an initial value when

you instantiate it.

s = StringVar(value="abc") # default value is ''

b = BooleanVar(value=True)

default is False

i = IntVar(value=10)

default is 0

d = DoubleVar(value=10.5)

default is 0.0

6.5. Radiobutton

 ttk.Radiobutton

 https://tkdocs.com/man/ttk_radiobutton

A radiobutton widget lets you choose between one of several

mutually exclusive choices. Unlike a checkbutton, they are not

limited to just two options. Radiobuttons are always used together

in a set, where multiple radiobutton widgets are tied to a single

choice or preference. They are appropriate to use when the

number of options is relatively small, e.g., 3-5.

Radiobutton widgets.

Radiobuttons are created using the ttk.Radiobutton class. Typically,

you'll create and initialize several of them at once:

phone = StringVar()

home = ttk.Radiobutton(

parent

, text='Home', variable=phone, value='home')

office = ttk.Radiobutton(

parent

, text='Office', variable=phone, value='office')

cell = ttk.Radiobutton(

text='Mobile', variable=phone, value='cell')

Radiobuttons share most of the same configuration options as

checkbuttons. One exception is that the onvalue and offvalue

options are replaced with a single value option. Each radiobutton

in the set will have the same linked variable but a different value.

When the variable holds the matching value, that radiobutton will

visually indicate it is selected. If it doesn't match, the radiobutton

will be unselected. If the linked variable doesn't exist, or you

don't specify one with the variable option, radiobuttons also

display as "tristate" or indeterminate. This can be checked via the

alternate state flag.

6.6. Entry

 ttk.Entry

 https://tkdocs.com/man/ttk_entry

An entry widget presents users with a single-line text field where

they can type in a string value. These can be just about anything:

a name, a city, a password, social security number, etc.

Entry widgets.

Entries are created using the ttk.Entry class:

username = StringVar()

name = ttk.Entry(

textvariable=username)

A width configuration option may be specified to provide the

number of characters wide the entry should be. This allows you,

for example, to display a shorter entry for a zip or postal code.

Entry Contents

We've seen how checkbutton and radiobutton widgets have a

value associated with them. Entries do as well, and that value is

usually accessed through a linked variable specified by the

textvariable configuration option.

Unlike the various buttons, entries don't have a text or image beside

them to identify them. Use a separate label widget for that.

You can also get or change the value of the entry widget without

going through the linked variable. The get method returns the

current value, and the delete and insert methods let you change

the contents, e.g.

print('current value is %s' % name.get())

name.delete(0,'end')

delete between two indices, 0-based

name.insert(0, 'your name')

insert new text at a given index

Watching for Changes

Entry widgets don't have a command option to invoke a callback

whenever the entry is changed. To watch for changes, you should

watch for changes to the linked variable. See also "Validation"

below.

def it_has_been_written(*args):

 ...

username.trace_add("write", it_has_been_written)

You'll be fine if you stick with simple uses of trace_add like that

shown above. You might want to know that this is a small part

of a much more complex system for observing variables and

invoking callbacks when they are read, written, or deleted. You

can trigger multiple callbacks, add or delete them and introspect

them

These methods also replace a now-deprecated set of older methods

and that should not be used.

Tkinter allows you to watch for changes on a StringVar (or any

subclass of Both the older and newer tracing tools are a very

thin (and not terribly Pythonic) front end to Tcl's trace command.

 https://tkdocs.com/man/trace

Passwords

Entries can be used for passwords, where the actual contents are

displayed as a bullet or other symbol. To do this, set the show

configuration option to the character you'd like to display.

passwd = textvariable=password, show="*")

Widget States

Like the various buttons, entries can also be put into a disabled

state via the state command (and queried with Entries can also

use the state flag if set, users cannot change the entry, though

they can still select the text in it (and copy it to the clipboard).

There is also an invalid state, set if the entry widget fails

validation, which leads us to...

Validation

Users can type any text they like into an entry widget. However, if

you'd like to restrict what they can type into the entry, you can

do so with For example, an entry might only accept an integer or

a valid zip or postal code.

 Your program can specify what makes an entry valid or invalid,

as well as when to check its validity. As we'll see soon, the two

are related. We'll start with a simple example, an entry that can

only hold an integer up to five digits long.

 The validation criteria are specified via an entry's
validatecommand configuration option. You supply a piece of code

whose job is to validate the entry. It functions like a widget

callback or event binding, except that it returns a value (whether

or not the entry is valid). We'll validate the entry on every

keystroke; this is specified by providing a value of key to the

validate configuration option.

import re

def check_num(newval):

 return re.match('^[0-9]*$', newval) is not None and

len(newval) <= 5

check_num_wrapper = (root.register(check_num), '%P')

num = StringVar()

e = ttk.Entry(root, textvariable=num, validate='key',

validatecommand=check_num_wrapper)

e.grid(column=0, row=0, sticky='we')

 https://tkdocs.com/code/numvalidate.py

A few things are worth noting. First, as with event bindings, we

can access more information about the conditions that triggered

the validation via percent substitutions. We used one of these here:

%P is the new value of the entry if the validation passes. We'll

use a simple regular expression and a length check to determine

if the change is valid. To reject the change, our validation

command can return a false value, leaving the entry unchanged.

 Taking advantage of these percent substitutions requires some

gymnastics. You'll recall that Tkinter abstracts away percent

substitutions in event binding callbacks. All event parameters are

wrapped into an event object that is passed to the callback.

There's no equivalent abstraction for validation callbacks. Instead,

we have to choose which percent substitutions we're interested in.

The register method (which can be called on any widget, not just

creates a Tcl procedure which will call our Python function. The

percent substitutions we've chosen will be passed to it as

parameters.

 Let's extend our example so that the entry will accept a US zip

code, formatted as "#####" or "#####-####" ("#" can be any

digit). We'll still do some validation on each keystroke (only

allowing entry of numbers or a hyphen). However, We can no

longer fully validate the entry on every keystroke; if they've just

typed the first digit, it's not valid yet. So full validation will only

happen when the entry loses focus (e.g., a user tabs away from

it). Tk refers to this as in contrast with prevalidation (accepting

changes on each keystroke).

 How should we respond to errors? Let's add a message

reminding users of the format. It will appear if they type a wrong

key or tab away from the entry when it's not holding a valid zip

code. We'll remove the message when they return to the entry or

type a valid key. We'll also add a (dummy) button to "process"

the zip code, which will be disabled unless the zip entry is valid.

Finally, we'll also add a "name" entry so you can tab away from

the zip entry.

import re

errmsg = StringVar()

formatmsg = "Zip should be ##### or #####-####"

def check_zip(newval, op):

 errmsg.set('')

 valid = re.match('^[0-9]{5}(\-[0-9]{4})?$', newval) is not None

 btn.state(['!disabled'] if valid else ['disabled'])

 if op=='key':

 ok_so_far = re.match('^[0-9\-]*$', newval) is not None

and len(newval) <= 10

 if not ok_so_far:

 errmsg.set(formatmsg)

 return ok_so_far

 elif op=='focusout':

 if not valid:

 errmsg.set(formatmsg)

 return valid

check_zip_wrapper = (root.register(check_zip), '%P', '%V')

zip = StringVar()

f = ttk.Frame(root)

f.grid(column=0, row=0)

ttk.Label(f, text='Name:').grid(column=0, row=0, padx=5, pady=5)

ttk.Entry(f).grid(column=1, row=0, padx=5, pady=5)

ttk.Label(f, text='Zip:').grid(column=0, row=1, padx=5, pady=5)

e = ttk.Entry(f, textvariable=zip, validate='all',

validatecommand=check_zip_wrapper)

e.grid(column=1, row=1, padx=5, pady=5)

btn = ttk.Button(f, text="Process")

btn.grid(column=2, row=1, padx=5, pady=5)

btn.state(['disabled'])

msg = ttk.Label(f, font='TkSmallCaptionFont', foreground='red',

textvariable=errmsg)

msg.grid(column=1, row=2, padx=5, pady=5, sticky='w')

 https://tkdocs.com/code/validate.py

Notice that the validate configuration option has been changed

from key to That arranges for the validatecommand callback to

be invoked on not only keystrokes but other triggers. The trigger

is passed to the callback using the %V percent substitution. The

callback differentiated between key and focusout triggers (you can

also check for

There are a few more things to know about validation. First, if your

validatecommand ever generates an error (or doesn't return a

boolean), validation will be disabled for that widget. Your callback

can modify the entry, e.g., change its textvariable. You can ask the

widget to validate at any time by calling its validate method, which

returns true if validation passes (the %V substitution is set to

There is an invalidcommand configuration option (which works like

that is called whenever validation fails. You can use it to accomplish

nasty things like forcing the focus back on the widget that didn't

validate. In practice, it's rarely used. As mentioned earlier, the entry's

invalid state flag (which can be checked via the instate invalid

method) is automatically updated as validation succeeds or fails.

Other percent substitutions allow you to get the entry's contents prior

to editing differentiate between insert and delete where an insert or

delete occurs what is being inserted or deleted the current setting of

the validate option and the name of the widget

6.7. Combobox

 ttk.Combobox

 https://tkdocs.com/man/ttk_combobox

A combobox widget combines an entry with a list of choices. This

lets users either choose from a set of values you've provided

(e.g., typical settings), but also put in their own value (e.g., for

less common cases).

Combobox widgets.

Comboboxes are created using the ttk.Combobox class:

countryvar = StringVar()

country = ttk.Combobox(

textvariable=countryvar)

Like entries, the textvariable option links a variable in your

program to the current value of the combobox. As with other

widgets, you should initialize the linked variable in your own

code.

 A combobox will generate a <> virtual event that you can bind

to whenever its value changes. (You could also trace changes on

the as we've seen in the previous few widgets we covered.

Binding to the event is more straightforward, and so tends to be

our preferred choice.)

country.bind('<>',

Predefined Values

You can provide a list of values that users can choose from

using the values configuration option:

country['values'] = ('USA', 'Canada', 'Australia')

If set, the readonly state flag will restrict users to making choices

only from the list of predefined values but not be able to enter

their own (though if the current value of the combobox is not in

the list, it won't be changed).

country.state(["readonly"])

If you're using the combobox in readonly mode, I'd recommend that

when the value changes (i.e., on a <> event), that you call the

selection_clear method. It looks a bit odd visually without doing

that.

You can also get the current value using the get method and

change the current value using the set method (which takes a

single argument, the new value).

 To complement the get and set methods, you can also use the

current method to determine which item in the predefined values

list is selected. Call current with no arguments; it will return a 0-

based index into the list or -1 if the current value is not in the

list. You can select an item in the list by calling current with a

single 0-based index argument.

Want to associate some other value with each item in the list so that

your program can use one value internally, but it gets displayed in the

combobox as something else? You'll want to have a look at the

section entitled "Keeping Extra Item Data" when we get to the

discussion of listboxes in a couple of chapters from now.

7. The Grid Geometry Manager

We'll take a bit of a break from talking about different widgets

(what to put onscreen) and focus instead on geometry

management (where to put those widgets). We introduced the

general idea of geometry management in the "Tk Concepts"

chapter. Here, we focus on one specific geometry manager:

 As we've seen, grid lets you layout widgets in columns and

rows. If you're familiar with using HTML tables for layout, you'll

feel right at home here. This chapter illustrates the various ways

you can tweak grid to give you all the control you need for your

user interface.

 Grid is one of several geometry managers available in Tk, but

its mix of power, flexibility, and ease of use make it the best

choice for general use. Its constraint model is a natural fit with

today's layouts that rely on the alignment of widgets. There are

other geometry managers in Tk: pack is also quite powerful but

harder to use and understand, while place gives you complete

control of positioning each element. Even widgets like paned

windows, notebooks, canvas, and text that we'll explore later can

act as geometry managers.

It's worth noting that grid was first introduced to Tk in 1996, several

years after Tk became popular, and it took a while to catch on.

Before that, developers had always used pack to do constraint-based

geometry management. When grid came out, many developers kept

using and you'll still find it used in many Tk programs and

documentation. While there's nothing technically wrong with the

algorithm's behavior is often hard to understand. More importantly,

because the order that widgets are packed is significant in determining

layout, modifying existing layouts can be more difficult. Aligning

widgets in different parts of the user interface is also much trickier.

Grid has all the power of pack, produces nicer layouts (that align

widgets both horizontally and vertically), and is easier to learn and

use. Because of that, grid is the right choice for most developers most

of the time. Start your new programs using grid, and switch old ones

to grid as you make changes to an existing user interface.

The reference documentation for grid provides an exhaustive

description of grid, its behaviors, and all options.

 https://tkdocs.com/man/grid

7.1. Columns and Rows

In grid, widgets are assigned a column number and a row

number. These indicate each widget's position relative to other

widgets. Widgets in the same column are above or below each

other. Those in the same row are to the left or right of each

other.

 Column and row numbers must be positive integers (i.e., 0, 1,

2, ...). You don't have to start at 0 and can leave gaps in

column and row numbers (e.g., column 1, 2, 10, 11, 12, 20, 21).

This is useful if you plan to add more widgets in the middle of

the user interface later.

 The width of each column will vary depending on the width of

the widgets contained within the column. Ditto for the height of

each row. This means when sketching out your user interface and

dividing it into rows and columns, you don't need to worry about

each column or row being equal width.

7.2. Spanning Multiple Cells

Widgets can take up more than a single cell in the grid; to do

this, we'll use the columnspan and rowspan options when

gridding the widget. These are analogous to the "colspan" and

"rowspan" attributes of HTML tables.

 Here is an example of creating a user interface with multiple

widgets, some that take up more than a single cell.

Gridding multiple widgets.

from tkinter import *

from tkinter import ttk

root = Tk()

content = ttk.Frame(root)

frame = ttk.Frame(content, borderwidth=5, relief="ridge", width=200,

height=100)

namelbl = ttk.Label(content, text="Name")

name = ttk.Entry(content)

onevar = BooleanVar(value=True)

twovar = BooleanVar(value=False)

threevar = BooleanVar(value=True)

one = ttk.Checkbutton(content, text="One", variable=onevar,

onvalue=True)

two = ttk.Checkbutton(content, text="Two", variable=twovar,

onvalue=True)

three = ttk.Checkbutton(content, text="Three", variable=threevar,

onvalue=True)

ok = ttk.Button(content, text="Okay")

cancel = ttk.Button(content, text="Cancel")

content.grid(column=0, row=0)

frame.grid(column=0, row=0, columnspan=3, rowspan=2)

namelbl.grid(column=3, row=0, columnspan=2)

name.grid(column=3, row=1, columnspan=2)

one.grid(column=0, row=3)

two.grid(column=1, row=3)

three.grid(column=2, row=3)

ok.grid(column=3, row=3)

cancel.grid(column=4, row=3)

root.mainloop()

 https://tkdocs.com/code/gridexample1.py

7.3. Layout within the Cell

The width of a column (and height of a row) depends on all the

widgets contained in it. That means some widgets could be

smaller than the cells they are placed in. If so, where exactly

should they be put within their cells?

 By default, if a cell is larger than the widget contained in it,
the widget will be centered within it, both horizontally and

vertically. The master's background color will display in the empty

space around the widget. In the figure below, the widget in the

top right is smaller than the cell allocated to it. The (white)

background of the master fills the rest of the cell.

Layout within the cell and the 'sticky' option.

The sticky option can change this default behavior. Its value is a

string of 0 or more of the compass directions specifying which

edges of the cell the widget should be "stuck" to. For example, a

value of n (north) will jam the widget up against the top side,

with any extra vertical space on the bottom; the widget will still

be centered horizontally. A value of nw (north-west) means the

widget will be stuck to the top left corner, with extra space on

the bottom and right.

In Tkinter, you can also specify this as a list containing any of and

It's a stylistic choice, and we'll tend to use the list format in this

book.

Specifying two opposite edges, such as we (west, east), means the

widget will be stretched. In this case, it will be stuck to both the

left and right edges of the cell. So the widget will be wider than

its "ideal" size.

 If you want the widget to expand to fill up the entire cell, grid
it with a sticky value of nsew (north, south, east, west), meaning

it will stick to every side. This is shown in the bottom left widget

in the above figure.

Most widgets have options that can control how they are displayed if

they are larger than needed. For example, a label widget has an

anchor option that controls where the label's text will be positioned

within the widget's boundaries. The bottom left label in the figure

above uses the default anchor i.e., left side, vertically centered).

If you're having trouble getting things to line up the way you want

them to, first make sure you know how large the widget is. As

discussed with the label widget in the previous chapter, changing the

widget's background or border can help.

7.4. Handling Resize

If you've tried to resize the example, you'll notice that nothing

moves at all, as shown below.

Resizing the window.

Even if you took a peek below and added the extra sticky options

to our example, you'd still see the same thing. It looks like sticky

may tell Tk how to react if the cell's row or column does resize

but doesn't actually say that the row or columns should resize if

any extra room becomes available. Let's fix that.

 Every column and row in the grid has a weight option

associated with it. This tells grid how much the column or row

should grow if there is extra room in the master to fill. By

default, the weight of each column or row is 0, meaning it won't

expand to fill any extra space.

 For the user interface to resize, we'll need to specify a positive
weight to the columns and rows that we'd like to expand. You

must provide weights for at least one column and one row. This

is done using the columnconfigure and rowconfigure methods of

This weight is relative. If two columns have the same weight,

they'll expand at the same rate. In our example, we'll give the

three leftmost columns (holding the checkbuttons) weights of 3

and the two rightmost columns weights of 1. For every one pixel

the right columns grow, the left columns will grow by three

pixels. So as the window grows larger, most of the extra space

will go to the left side.

Resizing the window after adding weights.

Both columnconfigure and rowconfigure also take a minsize grid

option, which specifies a minimum size you really don't want the

column or row to shrink beyond.

7.5. Padding

Normally, each column or row will be directly adjacent to the next

so that widgets will be right next to each other. This is

sometimes what you want (think of a listbox and its scrollbar),

but often you want some space between widgets. In Tk, this is

called padding, and there are several ways you can choose to

add it.

 We've already actually seen one way, and that is using a

widget's own options to add the extra space around it. Not all

widgets have this, but one that does is a frame; this is useful

because frames are most often used as the master to grid other

widgets. The frame's padding option lets you specify a bit of

extra padding inside the frame, whether the same amount for

each of the four sides or even different for each.

 A second way is using the padx and pady grid options when
adding the widget. As you'd expect, padx puts a bit of extra

space to the left and right, while pady adds extra space top and

bottom. A single value for the option puts the same padding on

both left and right (or top and bottom), while a two-value list

lets you put different amounts on left and right (or top and

bottom). Note that this extra padding is within the grid cell

containing the widget.

 If you want to add padding around an entire row or column,

the columnconfigure and rowconfigure methods accept a pad

option, which will do this for you.

 Let's add the extra sticky, resizing, and padding behavior to
our example (additions in bold).

from tkinter import *

from tkinter import ttk

root = Tk()

content = ttk.Frame(root,

padding=(3,3,12,12)

)

frame = ttk.Frame(content, borderwidth=5, relief="ridge", width=200,

height=100)

namelbl = ttk.Label(content, text="Name")

name = ttk.Entry(content)

onevar = BooleanVar()

twovar = BooleanVar()

threevar = BooleanVar()

onevar.set(True)

twovar.set(False)

threevar.set(True)

one = ttk.Checkbutton(content, text="One", variable=onevar,

onvalue=True)

two = ttk.Checkbutton(content, text="Two", variable=twovar,

onvalue=True)

three = ttk.Checkbutton(content, text="Three", variable=threevar,

onvalue=True)

ok = ttk.Button(content, text="Okay")

cancel = ttk.Button(content, text="Cancel")

content.grid(column=0, row=0,

sticky=(N, S, E, W)

)

frame.grid(column=0, row=0, columnspan=3, rowspan=2,

sticky=(N, S, E, W)

)

namelbl.grid(column=3, row=0, columnspan=2,

sticky=(N, W), padx=5

)

name.grid(column=3, row=1, columnspan=2,

sticky=(N,E,W), pady=5, padx=5

)

one.grid(column=0, row=3)

two.grid(column=1, row=3)

three.grid(column=2, row=3)

ok.grid(column=3, row=3)

cancel.grid(column=4, row=3)

root.columnconfigure(0, weight=1) root.rowconfigure(0, weight=1)

content.columnconfigure(0, weight=3) content.columnconfigure(1,

weight=3) content.columnconfigure(2, weight=3)

content.columnconfigure(3, weight=1) content.columnconfigure(4,

weight=1) content.rowconfigure(1, weight=1)

root.mainloop()

 https://tkdocs.com/code/gridexample2.py

This looks more promising. Play around with the example to get

a feel for the resize behavior.

Grid example, handling in-cell layout and resize.

7.6. Additional Grid Features

If you look at the reference documentation for you'll see many

other things you can do with grid. Here are a few of the more

useful ones.

 https://tkdocs.com/man/grid

Querying and Changing Grid Options

Like widgets themselves, it's easy to introspect the various grid

options or change them. Setting options when you first grid the

widget is certainly convenient, but you can change them anytime

you'd like.

 The slaves method will tell you all the widgets that have been

gridded inside a master, or optionally those within just a certain

column or row. The info method will return a list of all the grid

options for a widget and their values. Finally, the configure

method lets you change one or more grid options on a widget.

 These are illustrated in this interactive session:

>>> content.grid_slaves()

[object .!frame.!button2>, object .!frame.!button>,

object .!frame.!checkbutton3>, object .!frame.!checkbutton2>,

object .!frame.!checkbutton>, object .!frame.!entry>,

object .!frame.!label>, object .!frame.!frame>]

>>> for w in content.grid_slaves(): print(w)

...

.!frame.!button2

.!frame.!button

.!frame.!checkbutton3

.!frame.!checkbutton2

.!frame.!checkbutton

.!frame.!entry

.!frame.!label

.!frame.!frame

>>> for w in content.grid_slaves(row=3): print(w)

...

.!frame.!button2

.!frame.!button

.!frame.!checkbutton3

.!frame.!checkbutton2

.!frame.!checkbutton

>>> for w in content.grid_slaves(column=0): print(w)

...

.!frame.!checkbutton

.!frame.!frame

>>> namelbl.grid_info()

{'in': object .!frame>, 'column': 3, 'row': 0, 'columnspan': 2,

'rowspan': 1,

'ipadx': 0, 'ipady': 0, 'padx': 5, 'pady': 0, 'sticky': 'nw'}

>>> namelbl.grid_configure(sticky=(E,W))

>>> namelbl.grid_info()

{'in': object .!frame>, 'column': 3, 'row': 0, 'columnspan': 2,

'rowspan': 1,

'ipadx': 0, 'ipady': 0, 'padx': 5, 'pady': 0, 'sticky': 'ew'}

Internal Padding

You saw how the padx and pady grid options added extra space

around the outside of a widget. There's also a less used type of

padding called "internal padding" controlled by the grid options

ipadx and

 The difference can be subtle. Let's say you have a frame that's

20x20, and specify normal (external) padding of 5 pixels on each

side. The frame will request a 20x20 rectangle (its natural size)

from the geometry manager. Normally, that's what it will be

granted, so it'll get a 20x20 rectangle for the frame, surrounded

by a 5-pixel border.

 With internal padding, the geometry manager will effectively add

the extra padding to the widget when figuring out its natural size,

as if the widget has requested a 30x30 rectangle. If the frame is

centered or attached to a single side or corner (using we'll end

up with a 20x20 frame with extra space around it. If, however,

the frame is set to stretch (i.e., a sticky value of or it will fill the

extra space, resulting in a 30x30 frame with no border.

Forget and Remove

The forget method of grid removes slaves from the grid they're

currently part of. It takes a list of one or more slave widgets as

arguments. This does not destroy the widget altogether but takes

it off the screen as if it had not been gridded in the first place.

You can grid it again later, though any grid options you'd

originally assigned will have been lost.

 The remove method of grid works the same, except that the

grid options will be remembered if you grid it again later.

7.7. Nested Layouts

As your user interface gets more complicated, the grid that

organizes all your widgets can get increasingly complicated. This

can make changing and maintaining your program very difficult.

 Luckily, you don't have to manage your entire user interface

with a single grid. If you have one area of your user interface

that is fairly independent of others, create a new frame and grid

the widgets in the area within that frame. For example, if you

were building a graphics editor with multiple palettes, toolbars,

etc., each one of those areas might be a candidate for putting in

its own frame.

 In theory, these frames, each with its own grid, can be nested

arbitrarily deep, though, in practice, this usually doesn't go

beyond a few levels. This can be a big help in modularizing your

program. If, for example, you have a palette of drawing tools, you

can create the whole thing in a separate function or class. It

would be responsible for creating all the component widgets,

gridding them together, setting up event bindings, etc. The details

of how things work inside that palette can be contained in that

one piece of code. Your main program only needs to know about

the single frame widget containing your palette.

 Our examples have shown just a hint of this: a content frame

was gridded into the main window, and then all the other widgets

gridded into the content frame.

 As your own programs grow, you'll likely run into situations

where changing the layout of one part of your interface requires

code changes to the layout of another part. That may be a clue

to reconsider how you're using grid and if splitting out

components into separate frames would help.

8. More Widgets

This chapter introduces several more widgets: listbox, scrollbar,

text, scale, spinbox, and progressbar. Some of these are starting

to be a bit more powerful than the basic ones we looked at

before. Here we'll also see a few instances of using the classic Tk

widgets in cases where there isn't (or there isn't a need for) a

themed counterpart.

8.1. Listbox

 Listbox

 https://tkdocs.com/man/listbox

A listbox widget displays a list of single-line text items, usually

lengthy, and allows users to browse through the list, selecting one

or more.

 Listboxes are part of the classic Tk widgets; there is not
presently a listbox in the themed Tk widget set.

Tk's treeview widget (which is themed) can also be used as a listbox

(a one-level deep tree), allowing you to use icons and styles with the

list. It's also likely that a multi-column (table) list widget will make

it into Tk at some point, whether based on treeview or one of the

available extensions.

Listbox widgets.

Listboxes are created using the Listbox class. A height

configuration option can specify the number of lines the listbox

will display at a time without scrolling:

l = height=10)

Populating the Listbox Items

There's an easy way and a hard way to populate and manage all

the items in the listbox.

 Here's the easy way. Each listbox has a listvariable

configuration option, which allows you to link a variable (which

must hold a list) to the listbox. Each element of this list is a

string representing one item in the listbox. To add, remove, or

rearrange items in the listbox, you can simply modify this variable

as you would any other list. Similarly, to find out, e.g., which

item is on the third line of the listbox, just look at the third

element of the list variable.

 It's actually not quite that easy. Tkinter doesn't allow you to
link regular Python lists to a As we saw with widgets like we

need to use a StringVar as an intermediary. It provides a

mapping between Python's lists and a string representation that

the underlying Tk widgets can use. It also means that anytime we

change the list, we need to update the

choices = ["apple", "orange", "banana"]

choicesvar = StringVar(value=choices)

l = Listbox(parent, listvariable=choicesvar)

...

choices.append("peach")

choicesvar.set(choices)

The older, harder way is to use a set of methods that are part of

the listbox widget itself. They operate on the (internal) list of

items maintained by the widget:

The insert method is used to add one or more items to the list;

idx is a 0-based index indicating the position of the item before

which the item(s) should be added; specify end to put the new

items at the end of the list.

Use the delete method to delete one or more items from the list;

first and last are indices as per the insert method.

Use the get method to return the contents of a single item at the

given position, or a list of the items between first and

The size method returns the number of items in the list.

The reason there is a hard way at all is because the listvariable

option was only introduced in Tk 8.3. Before that, you were stuck

with the hard way. Because using the list variable lets you use all the

standard list operations, it provides a much simpler API. It's certainly

an upgrade worth considering if you have listboxes doing things the

older way.

Selecting Items

You can choose whether users can select only a single item at a

time from the listbox or if multiple items can simultaneously be

selected. This is controlled by the selectmode option: the default

is only being able to select a single item while a selectmode of

extended allows users to select multiple items.

The names browse and again for backward compatibility reasons, are

truly awful. This is made worse by the fact that there are two other

modes, single and which you should not use (they use an old

interaction style that is inconsistent with modern user interface and

platform conventions).

To find out which item or items in the listbox are currently

selected, use the curselection method. It returns a list of indices

of all items currently selected; this may be an empty list. For lists

with a selectmode of it will never be longer than one item. You

can also use the selection_includes index method to check if the

item with the given index is currently selected.

if lbox.selection_includes(2): ...

To programmatically change the selection, you can use the

selection_clear first ?last? method to deselect either a single item

or any within the range of indices specified. To select an item or

all items in a range, use the selection_set first ?last? method.

Both of these will not touch the selection of any items outside

the range specified.

 If you change the selection, you should also ensure that the
newly selected item is visible (i.e., it is not scrolled out of view).

To do this, use the see index method.

lbox.selection_set(idx)

lbox.see(idx)

When a user changes the selection, a <> virtual event is

generated. You can bind to this to take any action you need.

Depending on your application, you may also want to bind to a

double-click event and use it to invoke an action with the

currently selected item.

lbox.bind("<>", lambda e: updateDetails(lbox.curselection()))

lbox.bind("", lambda e: invokeAction(lbox.curselection()))

Stylizing the List

Like most of the "classic" Tk widgets, you have immense flexibility

in modifying the appearance of a listbox. As described in the

reference you can modify the font the listbox items are displayed

in, the foreground (text) and background colors for items in their

normal state, when selected, when the widget is disabled, etc.

There is also an itemconfigure method that allows you to change

the foreground and background colors of individual items.

 As is often the case, restraint is useful. Generally, the default
values will be entirely suitable and a good match for platform

conventions. In the example we'll get to momentarily, we'll show

how restrained use of these options can be put to good effect, in

this case displaying alternate lines of the listbox in slightly

different colors.

Keeping Extra Item Data

The listvariable (or the internal list, if you're managing things the

old way) holds the strings that will be shown in the listbox. It's

often the case, though, that each string you're displaying is

associated with some other data item. This might be an internal

object meaningful to your program but not meant to be displayed

to users. In other words, what you're really interested in is not so

much the string displayed in the listbox but the associated data

item. For example, a listbox may display a list of names to users,

but your program is really interested in the underlying user object

(or id number) for each one, not the particular name.

 How can we associate this underlying value with the name that

is displayed? Unfortunately, the listbox widget itself doesn't offer

any facilities, so it's something we'll have to manage separately.

There are a couple of obvious approaches. First, if the displayed

strings are guaranteed unique, you could use a hash table to

map each name to its associated underlying object. This wouldn't

work well for peoples' names, where duplicates are possible, but

could work for countries, which are unique.

 A second approach is to keep a second list parallel to the list
of strings displayed in the listbox. This second list will hold the

underlying object associated with each item that is displayed. So

the first item in the displayed strings list corresponds to the first

item in the underlying objects list, the second to the second, etc.

Any changes that you make in one list (insert, delete, reorder),

you must make in the other. You can then easily map from the

displayed list item to the underlying object based on their

position in the list.

Example

Here is a silly example showing several of these listbox

techniques. We'll have a list of countries displayed. We'll be able

to select only a single country at a time. As we do so, a status

bar will display the population of the country. You can press a

button to send one of several gifts to the selected country's head

of state (well, not really, but use your imagination). Sending a gift

can also be triggered by double-clicking the list or hitting the

Return key.

 Behind the scenes, we maintain two lists in parallel. The first

is a list of two-letter country codes. The other is the

corresponding name for each country that we will display in the

listbox. We also have a simple hash table that contains the

population of each country, indexed by the two-letter country code.

Country selector listbox example.

from tkinter import *

from tkinter import ttk

root = Tk()

Initialize our country "databases": # - the list of country codes (a

subset anyway) # - parallel list of country names, same order as the

country codes # - a hash table mapping country code to population

countrycodes = ('ar', 'au', 'be', 'br', 'ca', 'cn', 'dk', 'fi', 'fr', 'gr', 'in',

'it', 'jp', 'mx', 'nl', 'no', 'es', 'se', 'ch')

countrynames = ('Argentina', 'Australia', 'Belgium', 'Brazil', 'Canada',

'China', 'Denmark', \

 'Finland', 'France', 'Greece', 'India', 'Italy', 'Japan', 'Mexico',

'Netherlands', 'Norway', 'Spain', \

 'Sweden', 'Switzerland')

cnames = StringVar(value=countrynames)

populations = {'ar':41000000, 'au':21179211, 'be':10584534,

'br':185971537, \

 'ca':33148682, 'cn':1323128240, 'dk':5457415, 'fi':5302000,

'fr':64102140, 'gr':11147000, \

 'in':1131043000, 'it':59206382, 'jp':127718000,

'mx':106535000, 'nl':16402414, \

 'no':4738085, 'es':45116894, 'se':9174082, 'ch':7508700}

Names of the gifts we can send

gifts = { 'card':'Greeting card', 'flowers':'Flowers',

'nastygram':'Nastygram'}

State variables

gift = StringVar()

sentmsg = StringVar()

statusmsg = StringVar()

Called when the selection in the listbox changes; figure out

which country is currently selected, and then lookup its country #

code, and from that, its population. Update the status message #

with the new population. As well, clear the message about the # gift

being sent, so it doesn't stick around after we start doing # other

things.

def showPopulation(*args):

 idxs = lbox.curselection()

 if len(idxs)==1:

 idx = int(idxs[0])

 code = countrycodes[idx]

 name = countrynames[idx]

 popn = populations[code]

 statusmsg.set("The population of %s (%s) is %d" %

(name, code, popn))

 sentmsg.set('')

Called when the user double clicks an item in the listbox, presses

the "Send Gift" button, or presses the Return key. In case the

selected # item is scrolled out of view, make sure it is visible.

#

Figure out which country is selected, which gift is selected with the

radiobuttons, "send the gift", and provide feedback that it was sent.

def sendGift(*args):

 idxs = lbox.curselection()

 if len(idxs)==1:

 idx = int(idxs[0])

 lbox.see(idx)

 name = countrynames[idx]

Gift sending left as an exercise to the reader

 sentmsg.set("Sent %s to leader of %s" % (gifts[gift.get()],

name))

Create and grid the outer content frame

c = ttk.Frame(root, padding=(5, 5, 12, 0))

c.grid(column=0, row=0, sticky=(N,W,E,S))

root.grid_columnconfigure(0, weight=1)

root.grid_rowconfigure(0,weight=1)

Create the different widgets; note the variables that many # of

them are bound to, as well as the button callback. # We're using the

StringVar() 'cnames', constructed from 'countrynames' lbox =

Listbox(c, listvariable=cnames

, height=5)

lbl = ttk.Label(c, text="Send to country's leader:")

g1 = ttk.Radiobutton(c, text=gifts['card'],

variable=gift

, value='card')

g2 = ttk.Radiobutton(c, text=gifts['flowers'],

variable=gift

, value='flowers')

g3 = ttk.Radiobutton(c, text=gifts['nastygram'],

variable=gift

, value='nastygram')

send = ttk.Button(c, text='Send Gift',

command=sendGift

, default='active')

sentlbl = ttk.Label(c,

textvariable=sentmsg

, anchor='center')

status = ttk.Label(c,

textvariable=statusmsg

, anchor=W)

Grid all the widgets

lbox.grid(column=0, row=0, rowspan=6, sticky=(N,S,E,W))

lbl.grid(column=1, row=0, padx=10, pady=5)

g1.grid(column=1, row=1, sticky=W, padx=20)

g2.grid(column=1, row=2, sticky=W, padx=20)

g3.grid(column=1, row=3, sticky=W, padx=20)

send.grid(column=2, row=4, sticky=E)

sentlbl.grid(column=1, row=5, columnspan=2, sticky=N, pady=5,

padx=5)

status.grid(column=0, row=6, columnspan=2, sticky=(W,E))

c.grid_columnconfigure(0, weight=1)

c.grid_rowconfigure(5, weight=1)

Set event bindings for when the selection in the listbox changes,

when the user double clicks the list, and when they hit the Return key

lbox.bind('<>', showPopulation)

lbox.bind('', sendGift)

root.bind('', sendGift)

Colorize alternating lines of the listbox

for i in range(0,len(countrynames),2):

 lbox.itemconfigure(i, background='#f0f0ff')

Set the starting state of the interface, including selecting the

default gift to send, and clearing the messages. Select the first #

country in the list; because the <> event is only # fired when users

makes a change, we explicitly call showPopulation.

gift.set('card')

sentmsg.set('')

statusmsg.set('')

lbox.selection_set(0)

showPopulation()

root.mainloop()

 https://tkdocs.com/code/country.py

One obvious thing missing from this example was that while the

list of countries could be quite long, only part of it fits on the

screen at once. To show countries further down in the list, you

had to either drag with your mouse or use the down arrow key.

A scrollbar would have been nice. Let's fix that.

8.2. Scrollbar

 ttk.Scrollbar

 https://tkdocs.com/man/ttk_scrollbar

A scrollbar widget helps users see all parts of another widget,

whose content is typically much larger than what can be shown

in the available screen space.

Scrollbar widgets.

Scrollbars are created using the ttk.Scrollbar class:

s = ttk.Scrollbar(parent

, orient=VERTICAL, command=listbox.yview)

listbox.configure(yscrollcommand=s.set)

Unlike in some user interface toolkits, Tk scrollbars are not a

part of another widget (e.g., a listbox) but are a separate widget

altogether. Instead, scrollbars communicate with the scrolled widget

by calling methods on the scrolled widget; as it turns out, the

scrolled widget also needs to call methods on the scrollbar.

If you're using a recent Linux distribution, you've probably noticed

that the scrollbars you see in many applications have changed to look

more like what you'd see on macOS. This newer look isn't supported

on Linux by any of the default themes included with Tk. However,

some third-party themes do support it.

The orient configuration option determines whether the scrollbar

will scroll the scrolled widget in the horizontal or vertical

dimension. You then need to use the command configuration

option to specify how to communicate with the scrolled widget.

This is the method to call on the scrolled widget when the

scrollbar moves.

 Every widget that can be scrolled vertically includes a method

named while those that can be scrolled horizontally have a

method named As long as this method is present, the scrollbar

doesn't need to know anything else about the scrolled widget.

When the scrollbar is manipulated, it appends several parameters

to the method call, indicating how it was scrolled, to what

position, etc.

 The scrolled widget also needs to communicate back to the

scrollbar, telling it what percentage of the entire content area is

now visible. Besides the yview and/or xview methods, every

scrollable widget also has a yscrollcommand and/or

xscrollcommand configuration option. This is used to specify a

method call, which must be the scrollbar's set method. Again,

additional parameters will be automatically tacked onto the

method call.

If you want to move the scrollbar to a particular position from within

your program, you can call the set first last method yourself. Pass it

two floating-point values (between 0 and 1) indicating the start and

end percentage of the content area that is visible.

Example

Listboxes are one of several types of widgets that are scrollable.

Here, we'll build a very simple user interface consisting of a

vertically scrollable listbox that takes up the entire window, with

just a status line at the bottom.

Scrolling a listbox.

from tkinter import *

from tkinter import ttk

root = Tk()

l = Listbox(root, height=5)

l.grid(column=0, row=0, sticky=(N,W,E,S))

s = ttk.Scrollbar(root, orient=VERTICAL,

command=l.yview

)

s.grid(column=1, row=0, sticky=(N,S))

l['yscrollcommand'] = s.set

ttk.Label(root, text="Status message here", anchor=

(W)).grid(column=0, columnspan=2, row=1, sticky=(W,E))

root.grid_columnconfigure(0, weight=1)

root.grid_rowconfigure(0, weight=1)

for i in range(1,101):

 l.insert('end', 'Line %d of 100' % i)

root.mainloop()

 https://tkdocs.com/code/scrollbar.py

If you've seen an earlier version of this book, you might recall that at

this point, we introduced a sizegrip widget. It placed a small handle

at the bottom right of the window, allowing users to resize the

window by dragging the handle. This was commonly seen on some

platforms, including older versions of macOS. Some older versions of

Tk even automatically added this handle to the window for you.

Platform conventions tend to evolve faster than long-lived open source

GUI toolkits. Mac OS X 10.7 did away with the size grip in the

corner in favor of allowing resizing from any window edge, finally

catching up with the rest of the world. Unless there's a pressing need

to be visually compatible with 10+ year old operating systems, if you

have a sizegrip (class in your application, it's probably best to

remove it.

8.3. Text

 Text

 https://tkdocs.com/man/text

A text widget provides users with an area so that they can enter

multiple lines of text. Text widgets are part of the classic Tk

widgets, not the themed Tk widgets.

Text widgets.

Tk's text widget is, along with the canvas widget, one of two uber-

powerful widgets that provide amazingly deep but easily programmed

features. Text widgets have formed the basis for full word processors,

outliners, web browsers, and more. We'll get into some of the

advanced stuff in a later chapter. Here, we'll show you how to use

the text widget to capture fairly simple, multi-line text input.

Text widgets are created using the Text class:

t = width=40, height=10)

The width and height options specify the requested screen size of

the text widget, in characters and rows, respectively. The contents

of the text can be arbitrarily large. You can use the wrap

configuration option to control how line wrapping is handled:

values are none (no wrapping, text may horizontally scroll), char

(wrap at any character), and word (wrapping will only occur at

word boundaries).

 A text widget can be disabled so that no editing can occur.
Because text is not a themed widget, the usual state and instate

methods are not available. Instead, use the configuration option

setting it to either disabled or

txt['state'] = 'disabled'

Scrolling works the same way as in listboxes. The xscrollcommand

and yscrollcommand configuration options attach the text widget

to horizontal and/or vertical scrollbars, and the xview and yview

methods are called from scrollbars. To ensure that a given line is

visible (i.e., not scrolled out of view), you can use the see index

method, where index is in the form e.g., 5.0 for the first (0-based)

character of line 5 (1-based).

Contents

Text widgets do not have a linked variable associated with them

like, for example, entry widgets do. To retrieve the contents of the

entire text widget, call the method get 1.0 the 1.0 is an index into

the text and means the first character of the first line, and end is

a shortcut for the index of the last character in the last line.

Other indices could be provided to retrieve smaller ranges of text

if needed.

contents = txt.get('1.0', 'end')

Text can be added to the widget using the insert index string

method; again index is in the form line.char and marks the

character before which text is inserted; use end to add text to the

end of the widget. You can delete a range of text using the delete

start end method, where both start and end are text indices as

already described.

 We'll get into the text widget's many additional advanced

features in a later chapter.

8.4. Scale

 ttk.Scale

 https://tkdocs.com/man/ttk_scale

A scale widget allows users to choose a numeric value through

direct manipulation.

Scale widgets.

Scale widgets are created using the ttk.Scale class:

s = orient=HORIZONTAL, length=200, from_=1.0, to=100.0)

Because 'from' is a reserved keyword in Python, we need to add a

trailing underscore when using it as a configuration option.

The orient option may be either horizontal or The length option,

which represents the longer axis of either horizontal or vertical

scales, is specified in screen units (e.g., pixels). You should also

define the range of the number that the scale allows users to

choose; to do this, set a floating-point number for each of the

from_ and to configuration options.

 There are several different ways you can set the current value
of the scale (which must be a floating-point value between the

from_ and to values). You can set (or read, to get the current

value) the scale's value configuration option. You can link the

scale to a variable using the variable option. Or, you can call the

scale's set value method to change the value or the get method

to read the current value.

 A command configuration option lets you specify a script to

call whenever the scale is changed. Tk will append the current

value of the scale as a parameter each time it calls this script

(we saw a similar thing with extra parameters being added to

scrollbar callbacks).

label tied to the same variable as the scale, so auto-updates

num = StringVar()

ttk.Label(root, textvariable=num).grid(column=0, row=0, sticky='we')

label that we'll manually update via the scale's command callback

manual = ttk.Label(root)

manual.grid(column=0, row=1, sticky='we')

def update_lbl(val):

 manual['text'] = "Scale at " + val

scale = ttk.Scale(root, orient='horizontal', length=200, from_=1.0,

to=100.0, variable=num, command=update_lbl)

scale.grid(column=0, row=2, sticky='we')

scale.set(20)

 https://tkdocs.com/code/scale.py

As with other themed widgets, you can use the state state and

instate disabled methods to prevent users from modifying the

scale.

As the scale widget does not display the actual values, you may want

to add those separately, e.g., using label widgets.

8.5. Spinbox

 ttk.Spinbox

 https://tkdocs.com/man/ttk_spinbox

A spinbox widget allows users to choose numbers (or, in fact,

items from an arbitrary list). It does this by combining an entry-

like widget showing the current value with a pair of small

up/down arrows, which can be used to step through the range of

possible choices.

The themed spinbox was added in Tk 8.5.9 (released in 2010). If you

must run an older version, there is a spinbox in the classic Tk

widgets, though with a slightly different API.

Spinbox widgets.

Spinbox widgets are created using the ttk.Spinbox class:

spinval = StringVar()

s = ttk.Spinbox(

from_=1.0, to=100.0, textvariable=spinval)

Like scale widgets, spinboxes let users choose a number between

a certain range (specified using the from_ and to configuration

options), though through a very different user interface. You can

also specify an which controls how much the value changes every

time you click the up or down button.

 Like a listbox or combobox, spinboxes can also be used to let

users choose an item from an arbitrary list of strings; these can

be specified using the values configuration option. This works in

the same way it does for comboboxes; specifying a list of values

will override to from_ and to settings.

 In their default state, spinboxes allow users to select values
either via the up and down buttons or by typing them directly

into the entry area that displays the current value. If you'd like to

disable the latter feature so that only the up and down buttons

are available, you can set the readonly state flag.

s.state(['readonly'])

Like other themed widgets, you can also disable spinboxes via the

disabled state flag or check the state via the instate method.

Spinboxes also support validation in the same manner as entry

widgets, using the validate and validatecommand configuration

options.

You might be puzzled about when to choose a scale, listbox,

combobox, entry, or a spinbox. Often, several of these can be used for

the same types of data. The answer really depends on what you want

users to select, platform user interface conventions, and the role the

value plays in your user interface.

For example, both a combobox and a spinbox take up fairly small

amounts of space compared with a listbox. They might make sense

for a more peripheral setting. A more primary and prominent choice

in a user interface may warrant the extra space a listbox occupies.

Spinboxes don't make much sense when items don't have a natural

and obvious ordering to them. Be careful about putting too many

items in both comboboxes and spinboxes. This can make it more

time-consuming to select an item.

There is a boolean wrap option that determines whether the value

should wrap around when it goes beyond the starting or ending

values. You can also specify a width for the entry holding the

current value of the spinbox.

 Again there are choices as to how to set or get the current
value in the spinbox. Normally, you would specify a linked

variable with the textvariable configuration option. As usual, any

changes to the variable are reflected in the spinbox, while any

changes in the spinbox are reflected in the linked variable. As

well, the set value and get methods allow you to set or get the

value directly.

 Spinboxes generate virtual events when users press up or down
A command configuration option allows you to provide a callback

that is invoked on any changes.

8.6. Progressbar

 ttk.Progressbar

 https://tkdocs.com/man/ttk_progressbar

A progressbar widget provides feedback to users about the

progress of a lengthy operation.

 In situations where you can estimate how long the operation

will take to complete, you can display what fraction has already

been completed. Otherwise, you can indicate the operation is

continuing, but without suggesting how much longer it will take.

Progressbar widgets.

Progressbar widgets are created using the ttk.Progressbar class:

p = orient=HORIZONTAL, length=200, mode='determinate')

As with scale widgets, they should be given an orientation or with

the orient configuration option and can be given an optional The

mode configuration option can be set to either where the

progressbar will indicate relative progress towards completion, or

where it shows that the operation is still continuing but without

showing relative progress.

Determinate Progress

To use determinate mode, estimate the total number of "steps"

the operation will take to complete. This could be an amount of

time but doesn't need to be. Provide this to the progressbar

using the maximum configuration option. It should be a floating-

point number and defaults to 100.0 (i.e., each step is 1%).

 As you proceed through the operation, tell the progressbar how
far along you are with the value configuration option. So this

would start at 0 and then count upwards to the maximum value

you have set.

There are two slight variations on this. First, you can just store the

current value for the progressbar in a variable linked to it by the

progressbar's variable configuration option; that way, when you change

the variable, the progressbar will update. The other alternative is to

call the progressbar's step ?amount? method. This increments the

value by the given amount (defaults to 1.0).

Indeterminate Progress

Use indeterminate mode when you can't easily estimate how far

along in a long-running task you actually are. However, you still

want to provide feedback that the operation is continuing (and

that your program hasn't crashed). At the start of the operation,

call the progressbar's start method. At the end of the operation,

call its stop method. The progressbar will take care of the rest.

 Unfortunately, "the progressbar will take care of the rest" isn't
quite so simple. In fact, if you start the progressbar, call a

function that takes several minutes to complete, and then stop

the progressbar, your program will appear frozen the whole time,

with the progressbar not updating. In fact, it will not likely appear

onscreen at all. Yikes!

 To learn why that is and how to address it, the next chapter
takes a deeper dive into Tk's event loop.

9. Event Loop

At the end of the last chapter, we explained how to use a

progressbar to provide feedback to users about long-running

operations. The progressbar itself was simple: call its start method,

perform your operation, and then call its stop method. Unfortunately,

you learned that if you tried this, your application would most likely

appear completely frozen.

 To understand why, we need to revisit our discussion of event
handling way back in the Tk Concepts chapter. As we've seen, after

we construct an application's initial user interface, it enters the Tk

event loop. The event loop continually processes events, pulled from

the system event queue, usually dozens of times a second. It

watches for mouse or keyboard events, invoking command callbacks

and event bindings as needed.

 Less obviously, all screen updates are processed only in the event
loop. For example, you may change the text of a label widget.

However, that change doesn't appear onscreen immediately. Instead,

the widget notifies Tk that it needs to be redrawn. Later on, in

between processing other events, Tk's event loop will ask the widget

to redraw itself. All drawing occurs only in the event loop. The change

appears to happen immediately because the time between changing

the widget and the actual redraw in the event loop is so short.

Event loop showing application callbacks and screen updates.

9.1. Blocking the Event Loop

You run into problems when the event loop is prevented from

processing events for a lengthy period. Your application won't redraw

or respond to events and will appear to be frozen. The event loop

is said to be How can this happen?

 Let's start by visualizing the event loop as an execution timeline.

In a normal situation, each deviation from the event loop (callback,

screen update) takes only a fraction of a second before returning

control to the event loop.

Execution timeline for a well-behaved event loop.

In our scenario, the whole thing probably started from an event like

a user pressing a button. So the event loop calls our application

code to handle the event. Our code creates the progressbar,

performs the (lengthy) operations, and stops the progressbar. Only

then does our code return control back to the event loop. No events

have been processed in the meantime, and no screen redrawing has

occurred. Events have been piling up in the event queue.

Lengthy callback blocking the event loop.

To prevent blocking the event loop, event handlers must execute

quickly and return control to the event loop.

 If you have a long-running operation to perform or anything like

network I/O that could potentially take a long time, there are a few

different approaches you can take.

For the more technically inclined, Tk uses a single-threaded, event-driven

programming model. All the GUI code, the event loop, and your

application run within the same thread. Because of this, any calls or

computations that block event handlers are highly discouraged. Some GUI

toolkits use different models that allow for blocking code, running the

GUI and event handlers in separate threads from application code, etc.

Attempting to shoehorn these models into Tk can be a recipe for

frustration and lead to fragile and hacky code. If you respect Tk's model

rather than fight it, you won't run into problems.

9.2. One Step at a Time

If possible, the very best thing you can do is break your operation

into tiny steps, each of which can execute very quickly. You let the

event loop be responsible for when the next step occurs. That way,

the event loop continues to run, processing regular events, updating

the screen, and, in between all that, calling your code to perform

the next step of the operation.

 To do this, we make use of timer Our program can ask the event

loop to generate one of these events at a later time. As part of its

regular work, when the event loop reaches that time, it will call back

into our code to handle the event. Our code would perform the next

step of the operation. It then schedules another timer event for the

next step of the operation and immediately returns control back to

the event loop.

Breaking up a large operation into small steps tied together with timer

events.

Tk's after command can be used to generate timer events. You

provide the number of milliseconds to wait until the event should be

fired. It may happen later than that if Tk is busy processing other

events, but it won't happen before that. You can also ask that an

idle event be generated; it will fire when no other events in the

queue need to be processed. (Tk's screen updates and redraws occur

in the context of idle events.) You can find more details on after in

the reference

 https://tkdocs.com/man/after

In the following example, we'll perform a lengthy operation that is

broken up into 20 small steps. While this operation is being

performed, we'll update a progressbar and allow users to interrupt

the operation.

def start():

 b.configure(text='Stop', command=stop)

 l['text'] = 'Working...'

global interrupt; interrupt = False

root.after(1, step)

def stop():

global interrupt; interrupt = True

def step(count=0):

 p['value'] = count

if interrupt:

result(None)

 return

next step in our operation; don't take too long!

if count == # done!

result(42)

 return

root.after(1, lambda: step(count+1))

def result(answer):

 p['value'] = 0

 b.configure(text='Start!', command=start)

 l['text'] = "Answer: " + str(answer) if answer else "No Answer"

f = ttk.Frame(root); f.grid()

b = ttk.Button(f, text="Start!", command=start); b.grid(column=1,

row=0, padx=5, pady=5)

l = ttk.Label(f, text="No Answer"); l.grid(column=0, row=0, padx=5,

pady=5)

p = ttk.Progressbar(f, orient="horizontal", mode="determinate",

maximum=20);

p.grid(column=0, row=1, padx=5, pady=5)

 https://tkdocs.com/code/longrunning.py

To interrupt the process, we set a global variable, checking it each time

the timer event fires. Another option would be to cancel the pending

timer event. When we create the timer event, it returns an id number to

uniquely identify the pending timer. To cancel it, we can call the

after_cancel method, passing it that unique id.

You'll also note that we used a blocking form of after to simulate

performing our operation. Rather than scheduling an event, in this form,

the call blocks, waiting a given time before returning. It works the same

as a sleep system call.

9.3. Asynchronous I/O

Timer events take care of breaking up a long-running

computation, where you know that each step can be guaranteed

to complete quickly so that your handler will return to the event

loop. What if you have an operation that may not complete

quickly? This can happen when you make a variety of calls to the

operating system. The most common is when we're doing some

kind of I/O, whether writing a file, communicating with a

database, or retrieving data from a remote web server.

 Most I/O calls are so they don't return until the operation

completes (or fails). What we want to use instead are non-blocking

or asynchronous I/O calls. When you make an asynchronous I/O

call, it returns immediately, before the operation is completed.

Your code can continue running, or in this case, return back to

the event loop. Later on, when the I/O operation completes, your

program is notified and can process the result of the I/O

operation.

 If this sounds like treating I/O as another type of event, you're

exactly right. In fact, it's also called event-driven

 In Python, asynchronous I/O is provided by the asyncio
module and other modules layered on top of it.

 All asyncio applications rely heavily on an event loop. How
convenient; Tkinter has a great event loop! Unfortunately, the

asyncio event loop and the Tkinter event loop are not the same.

You can't run both at the same time, at least not within the

same thread (well, you can have one repeatedly call the other, but

it's pretty hacky and fragile).

 My recommendation: keep Tkinter in the main thread and spin-

off your asyncio event loops in another thread.

 Your application code, running in the main thread, may need

to coordinate with the asyncio event loop running in the other

thread. You can call a function running in the asyncio event loop

thread (even from the Tkinter event loop, e.g., in a widget

callback) using the asyncio call_soon_threadsafe method. To call

Tkinter from the asyncio event loop, keep reading.

9.4. Threads or Processes

Sometimes it's either impossible or impractical to break up a

long-running computation into discrete pieces that each run

quickly. Or you may be using a library that doesn't support

asynchronous operations. Or, like Python's it doesn't play nice

with Tk's event loop. In cases like these, to keep your Tk GUI

responsive, you'll need to move those time-consuming operations

or library calls out of your event handlers and run them

somewhere else. Threads, or even other processes, can help with

that.

 Running tasks in threads, communicating with them, etc., is

beyond the scope of this book. However, there are some

restrictions on using Tk with threads that you should be aware

of. The main rule is that you must only make Tk calls from the

thread where you loaded Tk.

 Tkinter goes to great lengths internally so that you can make

Tkinter calls from multiple threads by routing them to the main

thread (the one that created the Tk instance). It mostly works,

but not always. Despite all it tries to do, I highly recommend you

make all Tkinter calls from a single thread.

 If you need to communicate from another thread to the thread

running Tkinter, keep it as simple as possible. Use event_generate

to post a virtual event to the Tkinter event queue, and then bind

to that event in your code.

It can be even more complicated. The Tcl/Tk libraries can be

built either with or without thread support. If you have more than

one thread in your application, make sure you're running in a

threaded build. If you're unsure, check the Tcl variable it should

be not

>>> tkinter.Tcl().eval('set tcl_platform(threaded)')

Most everyone should be running threaded builds. The ability to create

non-threaded builds in Tcl/Tk is likely to go away in the future. If

you're using a non-threaded build with threaded code, consider this a

bug in your application, not a challenge to make it work.

9.5. Nested Event Processing

The previous three approaches are the correct ways to handle long-

running operations while keeping your Tk GUI responsive. What they

have in common is a single event loop that continuously processes

events of all kinds. That event loop will call event handlers in your

application code, which do their thing and quickly return.

 There is one other way. Within your long-running operation, you

can invoke the event loop to process a bunch of events. You can do

this with a single command, There's no messing around with timer

events or asynchronous I/O. Instead, you just sprinkle some update

calls throughout your operation. If you want to only keep the screen

redrawing but not process other events, there's even an option for

that

 This approach is seductively easy. And if you're lucky, it might

work. At least for a little while. But sooner or later, you're going to

run into serious difficulties trying to do things that way. Something

won't be updating, event handlers aren't getting called that should

be, events are going missing or being fired out of order, or worse.

You'll turn your program's logic inside out and tear your hair out

trying to make it work again.

When you use you're not returning control back to the running event

loop. You're effectively starting a new event loop nested within the

existing one. Remember, the event loop follows a single thread of

execution: no threads, no coroutines. If you're not careful, you're going to

end up with event loops called from within event loops called from...

well, you get the idea. If you even realize you're doing this, unwinding

the event loops (each of which may have different conditions to terminate

it) will be an interesting exercise. The reality won't match your mental

model of a simple event loop dispatching events one at a time,

independent of every other event. It's a classic example of fighting against

Tk's model. In very specific circumstances, it's possible to make it work.

In practice, you're asking for trouble. Don't say you haven't been

warned...

Nested event loops... this way madness lies.

10. Menus

This chapter describes how to handle menubars and popup

menus in Tk. For a polished application, these are areas you

particularly want to pay attention to. Menus need special care if

you want your application to fit in with other applications on

your users' platform.

 Speaking of which, the recommended way to figure out which

platform you're running on is:

'windowingsystem') # returns x11, win32 or aqua

Tkinter does not provide a direct equivalent to this call. However, it is

possible to directly execute an arbitrary Tcl-based Tk command using

the call() method (available on any Tkinter widget). Here, we're

invoking the Tcl/Tk command tk

This is more useful than examining global variables like tcl_platform

or older checks that used these methods should be reviewed. While

there used to be a strong correlation between platform and windowing

system, that's less true today. For example, if your platform is

identified as Unix, that might mean Linux under X11, macOS under

Aqua, or even macOS under X11.

10.1. Menubars

In this section, we'll look at menubars: how to create them, what

goes in them, how they're used, etc.

 Properly designing a menubar and its set of menus is beyond the

scope of this book. However, if you're creating an application for

someone other than yourself, here is a bit of advice. First, if you

find yourself with many menus, very long menus, or deeply nested

menus, you may need to rethink how your user interface is

organized. Second, many people use the menus to explore what the

program can do, particularly when they're first learning it, so try to

ensure major features are accessible by the menus. Finally, for each

platform you're targeting, become familiar with how applications use

menus. Consult the platform's human interface guidelines for full

details about the design, terminology, shortcuts, and much more.

This is an area you will likely have to customize for each platform.

Menubars.

You'll notice applications on some recent Linux distributions that show

their menus at the top of the screen when active rather than in the

window itself. Tk does not yet support this style of menus.

Menu Widgets and Hierarchy

 Menu

 https://tkdocs.com/man/menu

Menus are implemented as widgets in Tk, just like buttons and

entries. Each menu widget consists of a number of different items in

the menu. Items have various attributes, such as the text to display

for the item, a keyboard accelerator, and a command to invoke.

 Menus are arranged in a hierarchy. The menubar is itself a menu

widget. It has several items ("File," "Edit," etc.), each of which is a

submenu containing more items. These items can include things like

the "Open..." command in a "File" menu but also separators between

other items. It can even have items that open up their own

submenu (so-called cascading menus). As you'd expect from other

things you've seen already in Tk, anytime you have a submenu, it

must be created as a child of its parent menu.

 Menus are part of the classic Tk widgets; there is no menu

widget in the themed Tk widget set.

Before you Start

It's essential to put the following line in your application somewhere

before you start creating menus.

FALSE)

Without it, each of your menus (on Windows and X11) will start with

what looks like a dashed line and allows you to "tear-off" the menu,

so it appears in its own window. You should eliminate tear-off

menus from your application as they're not a part of any modern

user interface style.

This is a throw-back to the Motif-style X11 that Tk's original look and

feel were based on. Get rid of them unless your application is designed

to run only on that old box collecting dust in the basement. We'll all

look forward to a future version of Tk where this misguided paean to

backward compatibility is removed.

While on the topic of ancient history, the option_add bit uses the option

This provided a standardized way to customize some aspects of X11 user

interfaces through text-based configuration files, but it's no longer used

today. Older Tk programs may use the option command internally to

separate style configuration options from widget creation code. That

approach pre-dated themed Tk styles, which should be used for that

purpose today. However, it's somehow fitting to use the obsolete option

database to automatically remove the obsolete tear-off menus.

Creating a Menubar

In Tk, menubars are associated with individual windows; each

toplevel window can have at most one menubar. This is visually

obvious on Windows and many X11 systems, where menus are part

of each window, sitting just below the title bar.

 On macOS, though, there is a single menubar along the top of

the screen, shared by each window. As far as your Tk program is

concerned, each window still has its own menubar. As you switch

between windows, Tk ensures that the correct menubar is displayed.

If you don't specify a menubar for a particular window, Tk uses the

menubar associated with the root window; you'll have noticed by

now that this is automatically created for you when your Tk

application starts.

Because all windows have a menubar on macOS, it's important to define

one, either for each window or a fallback menubar for the root window.

Otherwise, you'll end up with the "built-in" menubar, which contains

menus that are only intended for typing commands directly into the

interpreter.

To create a menubar for a window, first, create a menu widget.

Then, use the window's menu configuration option to attach the

menu widget to the window.

win =

)

menubar = Menu(win)

win['menu'] = menubar

You can use the same menubar for more than one window. In other

words, you can specify the same menubar as the menu configuration

option for several toplevel windows. This is particularly useful on

Windows and X11, where you may want a window to include a menu

but don't necessarily need to juggle different menus in your application.

However, if the contents or state of menu items depends on what's going

on in the active window, you'll have to manage this yourself.

This is truly ancient history, but menubars used to be implemented by

creating a frame widget containing the menu items and packing it into

the top of the window like any other widget. Hopefully, you don't have

any code or documentation that still does this.

Adding Menus

We now have a menubar, but that's pretty useless without some

menus to go in it. So again, we'll create a menu widget for each

menu, each one a child of the menubar. We'll then add them all to

the menubar.

menubar =

)

menu_file = Menu(menubar)

menu_edit = Menu(menubar)

menubar.add_cascade(menu=menu_file, label='File')

menubar.add_cascade(menu=menu_edit, label='Edit')

The add_cascade method adds a menu item, which itself is a menu (a

submenu).

Adding Menu Items

Now that we have a couple of menus in our menubar, we can add

a few items to each menu.

Command Items

Regular menu items are called command items in Tk. We'll see

some other types of menu items shortly. Notice that menu items are

part of the menu itself; we don't have to create a separate menu

widget for each one (submenus being the exception).

menu_file.add_command(label='New', command=newFile)

menu_file.add_command(label='Open...', command=openFile)

menu_file.add_command(label='Close', command=closeFile)

The ellipsis ("...") is a special character on macOS, more tightly spaced

than three periods in a row. Tk takes care of substituting this character

for you automatically.

Each menu item has associated with it several configuration options,

analogous to widget configuration options. Each type of menu item

has a different set of available options. Cascade menu items have a

menu option used to specify the submenu, command menu items

have a command option to specify the command to invoke when

the item is chosen. Both have a label option to specify the text to

display for the item.

Submenus

We've already seen cascade menu items used to add a menu to a

menubar. Not surprisingly, if you want to add a submenu to an

existing menu, you also use a cascade menu item exactly the same

way. You might use this to build build a "recent files" submenu, for

example.

menu_recent = Menu(menu_file)

menu_file.add_cascade(menu=menu_recent, label='Open Recent')

for f in recent_files:

 menu_recent.add_command(label=os.path.basename(f),

command=lambda f=f: openFile(f))

 https://tkdocs.com/code/recentfiles.py

Separators

A third type of menu item is the which produces the dividing line

you often see between different menu items.

menu_file.add_separator()

Checkbutton and Radiobutton Items

Finally, there are also checkbutton and radiobutton menu items that

behave analogously to checkbutton and radiobutton widgets. These

menu items have a variable associated with them. Depending on its

value, an indicator (i.e., checkmark or selected radiobutton) may be

shown next to its label.

check = StringVar()

menu_file.add_checkbutton(label='Check', variable=check, onvalue=1,

offvalue=0)

radio = StringVar()

menu_file.add_radiobutton(label='One', variable=radio, value=1)

menu_file.add_radiobutton(label='Two', variable=radio, value=2)

When a user selects a checkbutton item that is not already checked,

it sets the associated variable to the value in Selecting an item that

is already checked sets it to the value in Selecting a radiobutton

item sets the associated variable to the value in Both types of items

also react to any changes you make to the associated variable.

 Like command items, checkbutton and radiobutton menu items

support a command configuration option that is invoked when the

menu item is chosen. The associated variable and the menu item's

state are updated before the callback is invoked.

Radiobutton menu items are not part of the Windows or macOS human

interface guidelines. On those platforms, the item's indicator is a

checkmark, as it would be for a checkbutton item. The semantics still

work. It's a good way to select between multiple items since it will show

one of them selected (checked).

Manipulating Menu Items

As well as adding items to the end of menus, you can also insert

them in the middle of menus via the insert index type ?option

value...? method; here index is the position (0..n-1) of the item you

want to insert before. You can also delete one or more menu items

using the delete index ?endidx? method.

menu_recent.delete(0, 'end')

Like most everything in Tk, you can look at or change the value of

an item's options at any time. Items are referred to via an Usually,

this is a number indicating the item's position in the menu. You can

also specify the label of the menu item (or, in fact, a "glob-style"

pattern to match against the item's label).

print(menu_file.entrycget(0, 'label')) # get label of top entry in menu

print(menu_file.entryconfigure(0))

show all options for an item

State

You can disable a menu item so that users cannot select it. This

can be done via the state option, setting it to the value Use a value

of normal to re-enable the item.

 Menus should always reflect the current state of your application.

If a menu item is not presently relevant (e.g., the "Copy" item is

only applicable if something in your application is selected), you

should disable it. When your application state changes so that the

item is applicable, make sure to enable it.

menu_file.entryconfigure('Close', state=DISABLED)

Sometimes you may have menu items whose name changes in

response to application state changes, rather than the menu item

being disabled. For example, A web browser might have a menu

item that changes between "Show Bookmarks" and "Hide

Bookmarks" as a bookmarks pane is hidden or displayed.

menu_bookmarks.entryconfigure(3, label="Hide Bookmarks")

As your program grows complex, it's easy to miss enabling or disabling

some items. One strategy is to centralize all the menu state changes in

one routine. Whenever there is a state change in your application, it

should call this routine. It should examine the current state and update

menus accordingly. The same code can also handle toolbars, status bars,

or other user interface components.

Accelerator Keys

The accelerator option is used to indicate a keyboard equivalent that

corresponds to a menu item. This does not actually create the

accelerator but only displays it next to the menu item. You still need

to create an event binding for the accelerator yourself.

Remember that event bindings can be set on individual widgets, all

widgets of a certain type, the toplevel window containing the widget

you're interested in, or the application as a whole. As menu bars are

associated with individual windows, event bindings for menu items will

usually be on the toplevel window the menu is associated with.

Accelerators are very platform-specific, not only in terms of which

keys are used for what operation, but what modifier keys are used

for menu accelerators (e.g., on macOS, it is the "Command" key, on

Windows and X11, it is usually the "Control" key). Examples of valid

accelerator options are and Commonly used modifiers include and

On macOS, modifier names are automatically mapped to the different

modifier icons that appear in menus, i.e., Shift ⇒ ⇧, Command ⇒ ⌘,

Control ⇒ ⌃, and Option ⇒ ⌥.

m_edit.entryconfigure('Paste', accelerator='Command+V')

Underline

All platforms support keyboard traversal of the menubar via the

arrow keys. On Windows and X11, you can also use other keys to

jump to particular menus or menu items. The keys that trigger these

jumps are indicated by an underlined letter in the menu item's label.

To add one of these to a menu item, use the underline

configuration option for the item. Its value should be the index of

the character you'd like underlined (from 0 to the length of the

string - 1). Unlike accelerator keys, the menu will watch for the

keystroke, so no separate event binding is needed.

m.add_command(label='Path Browser', underline=5) # underline "B"

Images

It is also possible to use images in menu items, either beside the

menu item's label or replacing it altogether. To do this, use the

image and compound options, which work just like in label widgets.

The value for image must be a Tk image object, while compound

can have the values or

Menu Virtual Events

Platform conventions for menus suggest standard menus and items

that should be available in most applications. For example, most

applications have an "Edit" menu, with menu items for "Copy,"

"Paste," etc. Tk widgets like entry or text will react appropriately

when those menu items are chosen. But if you're building your own

menus, how do you make that work? What command would you

assign to a "Copy" menu item?

 Tk handles this with virtual events. As you'll recall from the Tk

Concepts chapter, these are high-level application events, not low-level

operating system events. Tk's widgets will watch for specific events.

When you build your menus, you can generate those events rather

than directly invoking a callback function. Your application can create

event bindings to watch for those events too.

Some developers create virtual events for every item in their menus,

generating those events instead of directly calling routines in their code.

It's one way of splitting off your user interface code from the rest of your

application. Remember that even if you do this, you'll still need code

that enables and disables menu items, adjusts their labels, etc., in

response to application state changes.

Here's a minimal example showing how we'd add two items to an

"Edit" menu, the standard "Paste" item, and an application-specific

"Find..." item that will open a dialog to find or search for

something. We'll include an entry widget so that we can check that

"Paste" works.

from tkinter import *

from tkinter import ttk, messagebox

root = Tk()

ttk.Entry(root).grid()

m = Menu(root)

m_edit = Menu(m)

m.add_cascade(menu=m_edit, label="Edit")

m_edit.add_command(label="Paste", command=lambda:

root.focus_get().event_generate("<>"))

m_edit.add_command(label="Find...", command=lambda:

root.event_generate("<>"))

root['menu'] = m

def launchFindDialog(*args):

 messagebox.showinfo(message="I hope you find what you're

looking for!")

root.bind("<>", launchFindDialog)

root.mainloop()

 https://tkdocs.com/code/menu.py

When you generate a virtual event, you need to specify the widget that

the event should be sent to. We want the "Paste" event to be sent to the

widget with the keyboard focus (usually indicated by a focus ring). You

can determine which widget has the keyboard focus using the focus

command. Try it out, choosing the Paste item when the window is first

opened (when there's no focus) and after clicking on the entry (making it

the focus). Notice the entry handles the <> event itself. There's no need

for us to create an event binding.

The <> event is sent to the root window, which is where we create an

event binding. If we had multiple toplevel windows, we'd send it to a

specific window.

Tk predefines the following virtual events: and For additional

information, see the event command reference.

 https://tkdocs.com/man/event

10.2. Platform Menus

Each platform has a few menus in every menubar that are

handled specially by Tk.

macOS

You've probably noticed that Tk on macOS supplies its own

default menubar. It includes a menu named after the program

being run (in this case, your programming language's shell,

"Python"), a File menu, and standard Edit, Windows, and Help

menus, all stocked with various menu items.

 You can override this menubar in your own program, but to

get the results you want, you'll need to follow some particular

steps (in some cases, in a particular order).

Starting at Tk 8.5.13, the handling of special menus on macOS

changed due to the underlying Tk code migrating from the obsolete

Carbon API to Cocoa. If you're seeing duplicate menu names, missing

items, things you didn't put there, etc., review this section carefully.

The first thing to know is that if you don't specify a menubar for

a window (or its parent window, e.g., the root window), you'll end

up with the default menubar Tk supplies, which unless you're just

mucking around on your own, is almost certainly not what you

want.

The Application Menu

Every menubar starts with the system-wide apple icon menu. To

the right of that is a menu for the frontmost application. It is

always named after the binary being run. When you attach a

menubar to the window, if it does not already contain a specially

named .apple menu (see below), Tk will provide its default

application menu. It includes an "About Tcl & Tk" item, followed

by the standard menu items: preferences, the services submenu,

hide/show items, and quit. Again, you don't want this.

 If you supply your own .apple menu, when the menubar is

attached to the window, Tk will add the standard items

(preferences and onward) onto the end of any items you have

added. Perfect! Items you add after the menubar is attached to

the window will appear after the quit item, which, again, you

don't want.

The application menu, which we're dealing with here, is distinct from

the apple menu (the one with the apple icon, just to the left of the

application menu). Despite that, we really mean the application menu,

even though Tk still refers to it as the "apple" menu. This is a

holdover from pre-OS X days when these sorts of items did go in the

actual apple menu, and there was no separate application menu.

So, in other words, in your program, make sure you:

Create a menubar for each window or the root window. Do not

attach the menubar to the window yet!

Add a menu to the menubar named It will be used as the

application menu.

The menu will automatically be named the same as the

application binary; if you want to change this, rename (or make a

copy of) the binary used to run your script.

Add the items you want to appear at the top of the application

menu, i.e., an "About yourapp" item, followed by a separator.

After doing all this, you can then attach the menubar to your

window via the window's menu configuration option.

win = Toplevel(root)

menubar = Menu(win)

appmenu = Menu(menubar, name='apple')

menubar.add_cascade(menu=appmenu)

appmenu.add_command(label='About My Application')

appmenu.add_separator()

win['menu'] = menubar

While usually, Tkinter chooses a widget pathname for us, we've had

to explicitly provide one using the name option when creating the

application menu.

Handling the Preferences Menu Item

As you've noticed, the application menu always includes a

"Preferences..." menu item. This menu item should open a

preferences dialog if your application has one. If not, this menu

item should be disabled, which it is by default.

 To hook up your preferences dialog, you'll need to define a Tcl
procedure named It will be called when the Preferences menu

item is chosen; if the procedure is not defined, the menu item

will be disabled.

def showMyPreferencesDialog():

root.createcommand('tk::mac::ShowPreferences',

showMyPreferencesDialog)

Providing a Help Menu

Like the application menu, any help menu you add to your own

menubar is treated specially on macOS. As with the application

menu that needed a special name the help menu must be given

the name The help menu should also be added before the

menubar is attached to the

 The help menu will include the standard macOS search box to

search help, as well as an item named Help." As with the name

of the application menu, this comes from your program's

executable and cannot be changed. Similar to how preferences

dialogs are handled, to respond to this help item, you need to

define a Tcl procedure named If this procedure is not defined, it

will not disable the menu item. Instead, it will generate an error

when the help item is chosen.

If you don't want to include help, don't add a help menu to the

menubar, and none will be shown.

Unlike on X11 and earlier versions of Tk on macOS, the Help menu

will not automatically be put at the end of the menubar, so ensure it

is the last menu added.

You can also add other items to the help menu. These will

appear after the application help item.

helpmenu = Menu(menubar, name='help')

menubar.add_cascade(menu=helpmenu, label='Help')

root.createcommand('tk::mac::ShowHelp', ...)

Providing a Window Menu

On macOS, a "Window" menu contains items like minimize,

zoom, bring all to front, etc. It also includes a list of currently

open windows. Before that list, other application-specific items are

sometimes provided.

 By providing a menu named this standard window menu will

be added. Tk automatically keeps it in sync with all your toplevel

windows, without any extra code on your part. You can also add

any application-specific commands to this menu. These appear

before the list of your windows.

windowmenu = Menu(menubar, name='window')

menubar.add_cascade(menu=windowmenu, label='Window')

Other Menu Handlers

You've seen how handling certain standard menu items required

you to define Tcl callback procedures, e.g.,

tk::mac::ShowPreferences and

 There are several other callbacks that you can define. For
example, you might intercept the Quit menu item, prompting

users to save their changes before quitting. Here is the complete

list:

tk::mac::ShowPreferences: Called when the "Preferences..." menu

item is selected. tk::mac::ShowHelp: Called to display main online

help for the application. tk::mac::Quit: Called when the Quit menu

item is selected, when a user is trying to shut down the system

etc. tk::mac::OnHide: Called when your application has been

hidden. tk::mac::OnShow: Called when your application is shown

after being hidden. tk::mac::OpenApplication: Called when your

application is first opened. tk::mac::ReopenApplication: Called when

a user "reopens" your already-running application (e.g., clicks on

it in the Dock) tk::mac::OpenDocument: Called when the Finder

wants the application to open one or more documents (e.g., that

were dropped on it). The procedure is passed a list of pathnames

of files to be opened. tk::mac::PrintDocument: As with

OpenDocument, but the documents should be printed rather than

opened.

For additional information, see the tk_mac command reference.

 https://tkdocs.com/man/tk_mac

Windows

On Windows, each window has a "System" menu at the top left

of the window frame, with a small icon for your application. It

contains items like "Close", "Minimize", etc. In Tk, if you create a

system menu, you can add new items below the standard items.

sysmenu = Menu(menubar, name='system')

menubar.add_cascade(menu=sysmenu)

While Tkinter usually chooses a widget pathname for us, we've had to

explicitly provide one with the name this is the cue that Tk needs to

recognize it as the system menu.

X11

On X11, if you create a help menu, Tk ensures that it is always

the last menu in the menubar.

menu_help = Menu(menubar, name='help')

menubar.add_cascade(menu=menu_help, label='Help')

While Tkinter usually chooses a widget pathname for us, we've had to

explicitly provide one with the name this is the cue that Tk needs to

recognize it as the help menu.

10.3. Contextual Menus

Contextual menus ("popup" menus) are typically invoked by a

right mouse button click on an object in the application. A menu

pops up at the location of the mouse cursor. Users can then

select an item from the menu (or click outside it to dismiss it

without choosing any item).

 To create a contextual menu, we'll use exactly the same

commands we used to create menus in the menubar. Typically,

we'd create one menu with several command items and

potentially some cascade menu items and their associated menus.

 To activate the menu, users will perform a contextual menu

click. We'll have to create an event binding to capture that click.

That, however, can mean different things on different platforms.

On Windows and X11, this can be clicking the right mouse button

(the third mouse button). On macOS, it can be either clicking the

left (or only) button with the control key held down or right-

clicking on a multi-button mouse. Unlike Windows and X11,

macOS refers to this as the second mouse button, not the third,

so that's the event we'll see in our program.

Most earlier programs that have used popup menus assumed it was

only "button 3" they needed to worry about.

Besides capturing the correct contextual menu event, we also need

to capture the mouse's location. It turns out we need to do this

relative to the entire screen (global coordinates) and not local to

the window or widget you clicked on (local coordinates). The %X

and %Y substitutions in Tk's event binding system will capture

those for us.

 The last step is telling the menu to pop up at the particular

location via the post method. Here's an example of the whole

process, using a popup menu on the application's main window.

from tkinter import *

root = Tk()

menu = Menu(root)

for i in ('One', 'Two', 'Three'):

 menu.add_command(label=i)

if (root.tk.call('tk', 'windowingsystem')=='aqua'):

 root.bind('<2>', lambda e: menu.post(e.x_root, e.y_root))

 root.bind('', lambda e: menu.post(e.x_root, e.y_root))

else:

 root.bind('<3>', lambda e: menu.post(e.x_root, e.y_root))

root.mainloop()

 https://tkdocs.com/code/contextmenu.py

11. Windows and Dialogs

Everything we've done up until now has been in a single window.

In this chapter, we'll cover how to use multiple windows, change

various attributes of windows, and use some of the standard

dialog boxes available in Tk.

11.1. Creating and Destroying Windows

We've seen that all Tk programs start out with a root toplevel

window, and then widgets are created as children of that root

window. Creating new toplevel windows works almost exactly the

same as creating new widgets.

 Toplevel windows are created using the Toplevel class:

t =

Note: Toplevels are part of the classic Tk widgets, not the themed

widgets.

 Unlike regular widgets, we don't have to grid a toplevel for it
to appear onscreen. Once we've created a new toplevel, we can

create other widgets as children of that toplevel and grid them

inside the toplevel. The new toplevel behaves exactly like the

automatically created root window.

 To destroy a window, use its destroy method:

Note that you can use destroy on any widget, not just a toplevel

window. When you destroy a window, all windows (widgets) that

are children of that window are also destroyed. Be careful! If you

destroy the root window (that all other widgets are descended

from), that will terminate your application.

In a typical document-oriented application, we want to allow closing

a window while leaving others open. In that case, we may want to

create a new toplevel for every window and not put anything directly

inside the root window at all. While we can't just destroy the root

window, we can remove it entirely from the screen using its withdraw

method, which we'll see shortly.

11.2. Window Behavior and Styles

There are lots of things about how windows behave and how

they look that can be changed.

Window Title

To examine or change the title of the window:

oldtitle = title')

Size and Location

In Tk, a window's position and size on the screen are known as

its A full geometry specification looks like this:

 Width and height (usually in pixels) are pretty self-explanatory.

The x (horizontal position) is specified with a leading plus or

minus, so +25 means the left edge of the window should be 25

pixels from the left edge of the screen, while -50 means the right

edge of the window should be 50 pixels from the right edge of

the screen. Similarly, a y (vertical) position of +10 means the top

edge of the window should be ten pixels below the top of the

screen, while -100 means the bottom edge of the window should

be 100 pixels above the bottom of the screen.

Geometry specifies the actual coordinates on the screen. It doesn't

make allowances for systems like macOS with a menubar along the

top or a dock along the bottom. So specifying a position of +0+0

would actually place the top part of the window under the system

menu bar. It's a good idea to leave a healthy margin (at least 30

pixels) from the screen's edge.

Screen positions can be different than you might expect when you

have multiple monitors on your system. We'll cover that shortly.

Here is an example of changing the size and position. It places

the window towards the top righthand corner of the screen:

You can retrieve the current geometry the same way; just don't

provide a new geometry value. However, if you try it immediately

after changing the geometry, you'll find it doesn't match.

Remember that all drawing effectively occurs in the background in

response to idle times via the event loop. Until that drawing

occurs, the internal geometry of the window won't be updated. If

you do want to force things to update immediately, you can.

window

.update_idletasks()

print(

We've seen that the window defaults to the size requested by the

widgets that are gridded into it. If we create and add new widgets

interactively in the interpreter or add new widgets in response to other

events, the window size adjusts. This behavior continues until either we

explicitly provide the window's geometry as above or a user resizes the

window. At that point, even if we add more widgets, the window

won't change size. You'll want to be sure you're using all of features

(e.g., to make everything fit nicely.

Resizing Behavior

By default, toplevel windows, including the root window, can be

resized by users. However, sometimes you may want to prevent

users from resizing the window. You can do this via the resizable

method. Its first parameter controls whether users can change the

width, and the second if they can change the height. So to

disable all resizing:

If a window is resizable, you can specify a minimum and/or

maximum size that you'd like the window's size constrained to

(again, parameters are width and height):

You saw earlier how to obtain the current size of the window via

its geometry. Wondering how large it would be if you didn't

specify its geometry, or a user didn't resize it? You can retrieve

the window's requested i.e., how much space it requests from the

geometry manager. Like with drawing, geometry calculations are

only done at idle time in the event loop, so you won't get a

useful response until the widget has appeared onscreen.

or winfo_reqheight

You can use the reqwidth and reqheight methods on any widget, not

just toplevel windows. There are other winfo methods you can call on

any widget, such as width and to get the actual (not requested)

width and height. For more, see the winfo command reference.

 https://tkdocs.com/man/winfo

Intercepting the Close Button

Most windows have a close button in their title bar. By default,

Tk will destroy the window if users click on that button. You can,

however, provide a callback that will be run instead. A common

use is to prompt the user to save an open file if modifications

have been made.

The somewhat obscurely-named WM_DELETE_WINDOW originated

with X11 window manager protocols.

Transparency

Windows can be made partially transparent by specifying an alpha

channel, ranging from 0.0 (fully transparent) to 1.0 (fully opaque).

0.5)

Tkinter's wrapper to the underlying wm attributes command doesn't

interpret options, handle keyword arguments, etc.

On macOS, you can additionally specify a -transparent attribute

(using the same mechanism as with which makes the window

background transparent and removes its shadow. You should also

set the background configuration option for the window and any

frames to the color

Full Screen

You can make a window expand to take up the full screen:

1)

Other macOS-Specific Attributes

In addition to the -transparent attribute described above, macOS

windows boast some additional attributes.

 The (red) close widget in the title bar can indicate that the
content inside the window has been modified (e.g., the file needs

to be saved). Set the -modified attribute to 1 to indicate this or 0

to remove the modified indicator.

 You can draw users' attention to the window by bouncing its
icon in the macOS dock. To do so, set the window's -notify

attribute.

 If a window contains the contents of a document, you can

place an icon in the title bar specifying the file the document

refers to. Users can drag this icon as a proxy for dragging the

file in the Finder. Set the window's -titlepath attribute to the full

path of the file. Note that this does not change the title of the

window (you'll need to change that separately) but just provides

the icon.

 On macOS, windows can also take a variety of appearances

for different purposes, e.g., utility windows, modal dialogs, floating

windows, and so on. An unsupported command in Tk called

MacWindowStyle lets you assign one of these appearances to a

window. Unlike many options in Tk that can be changed later,

these appearances must be assigned after creating the window

but before it appears onscreen.

t = Toplevel(root)

t.tk.call("::tk::unsupported::MacWindowStyle", "style", t._w, "utility")

Besides other useful appearance styles include and

While officially unsupported, this feature has been available for a long

time in Tk. In the future, it will likely migrate to the wm attributes

command. For further information, including more details on the

different appearances and optional attributes, see the MacWindowStyle

wiki page (https://wiki.tcl-lang.org/page/MacWindowStyle).

Iconifying and Withdrawing

On most systems, you can temporarily remove the window from

the screen by iconifying it. In Tk, whether or not a window is

iconified is referred to as the window's The possible states for a

window include normal and iconic (for an iconified window), and

several others: or

 You can query or set the current window state directly. There
are also methods and these are shortcuts for setting the and

withdrawn states, respectively.

thestate =

For document-centric applications, where you want to allow closing

any window without the application exiting (as would happen if you

destroy the root window), use withdraw on the root window to

remove it from the screen, use new toplevel windows for your user

interface.

Stacking Order

Stacking order refers to the order that windows are "placed" on

the screen, from bottom to top. When the positions of two

windows overlap each other, the one closer to the top of the

stacking order will obscure or overlap the one lower in the

stacking order.

 You can ensure that a window is always at the top of the
stacking order (or at least above all others where this attribute

isn't set):

1)

You can find the current stacking order, listed from lowest to

highest:

root.tk.eval('wm stackorder

This method isn't exposed cleanly in Tkinter. It returns the internal

names of each window, not the window object.

You can also just check if one window is above or below

another:

if (root.tk.eval('wm stackorder isabove

))=='1') ...

if (root.tk.eval('wm stackorder '+str(

isbelow ...

You can also raise or lower windows, either to the very top

(bottom) of the stacking order, or just above (below) a designated

window:

Tkinter uses the name lift since raise is a reserved keyword in Python.

Why do you need to pass a window to get the stacking order?

Stacking order applies not only for toplevel windows, but for any

sibling widgets (those with the same parent). If you have several

widgets gridded together but overlapping, you can raise and lower

them relative to each other:

from tkinter import *

from tkinter import ttk

root = Tk()

little = ttk.Label(root, text="Little")

bigger = ttk.Label(root, text='Much bigger label')

little.grid(column=0,row=0)

bigger.grid(column=0,row=0)

root.after(2000, lambda: little.lift())

root.mainloop()

 https://tkdocs.com/code/stackorder.py

This uses timer events, which we covered in the event loop chapter.

The after command schedules a script to run in a certain number of

milliseconds in the future but leaves the event loop to continue.

Screen Information

We've previously used the winfo command to find out information

about specific widgets. It can also provide information about the

entire display or As usual, see the winfo command reference for

full details.

 https://tkdocs.com/man/winfo

For example, you can determine the screen's color depth (how

many bits per pixel) and color model (usually truecolor on

modern displays), its pixel density, and resolution.

print("color depth=" + str(root.winfo_screendepth())+ " (" +

root.winfo_screenvisual() + ")")

print("pixels per inch=" + str(root.winfo_pixels('1i')))

print("width=", str(root.winfo_screenwidth()) + " height=",

str(root.winfo_screenheight()))

Multiple Monitors

While normally you shouldn't have to pay attention to it, if you

have multiple monitors on your system and want to customize

things a bit, there are some tools in Tk to help.

 First, there are two ways that multiple monitors can be

represented. The first is with logically separate displays. This is

often the case on X11 systems, though it can be changed, e.g.,

using the xrandr system utility. A downside of this model is that

once a window is created on a screen, it can't be moved to a

different one. You can determine the screen that a Tk window is

running on, which looks something like :0.0 (an X11-formatted

display name).

root.winfo_screen()

When first creating a you can specify the screen it should be

created on using the screen configuration option.

Different monitors may have different resolutions, color depths, etc.

You'll notice that all the screen information calls we just covered are

methods invoked on a specific widget. They will return information

about whatever screen that window is located on.

Alternatively, multiple monitors can also be represented as one

big virtual display, which is the case on macOS and Windows.

When you ask for information about the screen, Tk will return

information on the primary For example, if you have two Full HD

monitors side-by-side, the screen resolution will be reported as

1920 x 1080, not 3840 x 1080. This is probably a good thing; it

means that if we're positioning or sizing windows, we don't need

to worry about multiple monitors, and everything will just show

up correctly on the primary monitor.

 What if a user moves a window from the primary monitor to

a different one? If you ask for its position, it will be relative to

the primary monitor. So in our side-by-side FHD monitor setup, if

you call the winfo_x method on a window positioned near the left

edge of a monitor, it might return 100 (if it's on the primary

monitor), -1820 (if it's on a monitor to the left of the primary

monitor), or 2020 (if it's on a monitor to the right of the

primary monitor). You can still use the geometry method we saw

a bit earlier to position the window on a different monitor, even

though the geometry specification may look a bit odd, e.g.,

 You can find out approximately how large the entire display is,

spanning multiple monitors. To do so, check a toplevel widget's

maximum size, i.e., how large the user can resize it (you can't do

this after you've already changed it, of course). This may be a bit

smaller than the full size of the display. For example, on macOS,

it will be reduced by the size of the menubar at the top of the

screen.

root.wm_maxsize()

11.3. Dialog Windows

Dialog boxes are a type of window used in applications to get

information from users, inform them that some event has occurred,

confirm an action, and more. The appearance and usage of dialog

boxes are usually quite specifically detailed in a platform's style

guide. Tk comes with several dialog boxes built-in for common

tasks. These help you conform to platform-specific style guidelines.

Selecting Files and Directories

Tk provides several dialogs to let users select files or directories. On

Windows and macOS, these invoke the underlying operating system

dialogs directly. The "open" variant on the dialog is used when you

want users to select an existing file (like in a File | Open... menu

command), while the "save" variant is used to choose a file to save

into (usually used by the File | Save As... menu command).

from tkinter import filedialog

filename = filedialog.askopenfilename()

filename = filedialog.asksaveasfilename()

dirname = filedialog.askdirectory()

All of these commands produce modal dialogs. This means that the

commands will not complete until a user submits the dialog. These

commands return the full pathname of the file or directory a user

has chosen or an empty string if a user cancels out of the dialog.

Open file dialogs.

Save file dialogs.

Choose directory dialogs.

Various options can be passed to these dialogs, allowing you to set

the allowable file types, initial directory, default filename, and many

more. These are detailed in the getOpenFile (includes and

chooseDirectory reference manual pages.

 https://tkdocs.com/man/getOpenFile

 https://tkdocs.com/man/chooseDirectory

Selecting Colors

Another modal dialog lets users select a color. It will return a color

value, e.g. The dialog takes an optional initialcolor option to specify

an existing color, i.e., that users might want to replace. More

information is available in the chooseColor reference manual pages.

 https://tkdocs.com/man/chooseColor

from tkinter import colorchooser

colorchooser.askcolor(initialcolor='#ff0000')

Choose color dialogs.

Selecting Fonts

Tk 8.6 added support for another system dialog: a font chooser.

While the file dialogs and color chooser were modal dialogs that

block until the dialog is dismissed and then return a result, the font

chooser doesn't work like that.

As the font chooser isn't available in Tk 8.5, if your code needs to

support older Tk versions, you'll need to take that into account.

Font chooser dialogs.

While the system font dialog is modal on some platforms, e.g.,

Windows, that's not the case everywhere. On macOS, the system font

chooser works more like a floating tool palette in a drawing

program, remaining available to change the font for whatever text is

selected in your main application window. The Tk font dialog API

has to accommodate both models. To do so, it uses callbacks (and

virtual events) to notify your application of font changes. Additional

details can be found in the fontchooser reference manual pages.

 https://tkdocs.com/man/fontchooser

To use the font dialog, first, provide it with an initial font and a

callback which will be invoked when a font is chosen. For

illustration, we'll have the callback change the font on a label.

l = ttk.Label(root, text="Hello World", font="helvetica 24")

l.grid(padx=10, pady=10)

def font_changed(font):

 l['font'] = font

root.tk.call('tk', 'fontchooser', 'configure', '-font', 'helvetica 24', '-

command', root.register(font_changed))

root.tk.call('tk', 'fontchooser', 'show')

Tkinter has not yet added a convenient way to use this new dialog,

so this example code uses the Tcl API directly. You can see the

latest work towards a proper Python API and download code at

You can query or change the font that is (or will be) displayed in the

dialog at any time.

Next, put the dialog onscreen via the show method. On platforms

where the font dialog is modal, your program will block at this

point until the dialog is dismissed. On other platforms, show returns

immediately; the dialog remains onscreen while your program

continues. At this point, a font has not been chosen. There's also a

hide method to remove it from the screen (not terribly useful when

the font dialog is modal).

root.tk.call('tk', 'fontchooser', 'show')

root.tk.call('tk', 'fontchooser', 'hide')

If the font dialog was modal, and the user chose a font, the dialog

would have invoked your callback, passing it a font specification. If

they canceled out of the dialog, there'd be no callback. When the

dialog isn't modal and the user chooses a font, it will invoke your

callback. A <> virtual event is also generated; you can retrieve the

current font via the dialog's font configuration option. If the font

dialog is closed, a <> virtual event is generated. You can also find

out if the font dialog is currently visible onscreen via the visible

configuration option (though changing it is an error; use the show

and hide methods instead).

Because of the significant differences, providing a good user experience on

all platforms takes a bit of work. On platforms where the font dialog is

modal, it's likely to be invoked from a button or menu item that says,

e.g., On other platforms, the button or menu item should toggle between

Show Fonts and Hide

If you have several text widgets in your application that can be given

different fonts, when one of them gains focus, it should update the font

chooser with its current font. This also means that a callback from the

font dialog may apply to a different text widget than the one you

initially called show from! Finally, be aware that the font chooser itself

may gain the keyboard focus on some platforms.

As of Tk 8.6.10, there are a few bugs in the font chooser on various

platforms. Here's a quick rundown, including workarounds:

on macOS, if you don't provide a font via the font configuration option,

your callbacks won't be invoked ⇒ always provide an initial font

on X11, if you don't provide values for all configuration options, those

you don't include will be reset to their default values ⇒ whenever you

change any option, change all of them, even if it's just to their current

value

on X11, the font dialog includes an Apply button when you provide a

callback but omits it when you don't (and just watch for virtual events);

however, other bugs mean those virtual events are never generated ⇒
always provide a command callback

on Windows, you can also leave off the Apply button by not providing a

callback; while virtual events are generated on font changes, the font

configuration option is never updated ⇒ always provide a command

callback, and hold onto the font yourself, rather than trying to ask the

font dialog for it later

on Windows, a font change virtual event is not generated if you change

the font configuration option in your code, though it is on macOS and

X11 ⇒ take any necessary actions when you change the font in your code

rather than in a virtual event handler

Because of the differences between platforms and the various bugs, testing

is far more important when using the font chooser than the other system

dialogs.

Alert and Confirmation Dialogs

Many applications use various simple modal alerts or dialogs to

notify users of an event, ask them to confirm an action, or make

another similar choice via clicking on a button. Tk provides a

versatile "message box" that encapsulates all these different types of

dialogs.

from tkinter import messagebox

messagebox.showinfo(message='Have a good day')

Simple message boxes.

messagebox.askyesno(

 message='Are you sure you want to install SuperVirus?'

 icon='question' title='Install')

Example message boxes.

Like the previous dialogs that we've seen, these are modal and

return the result of a user's action to the caller. Rather than using a

type option, Tkinter uses a different method name for each type of

dialog. The return values vary with the method:

showinfo: ⇒ ok showwarning: ⇒ ok showerror: ⇒ ok askokcancel: ⇒
True (on ok) or False (on cancel) askyesno: ⇒ True (on yes) or

False (on no) askretrycancel: ⇒ True (on retry) or False (on cancel)

askquestion: ⇒ yes or no askyesnocancel: ⇒ True (on yes), False (on

no), or None (on cancel)

Admittedly, the Tkinter messagebox API isn't the most consistent. It

mixes return types (strings or booleans), there is some duplication and

and one underlying dialog type is omitted.

The full list of possible options is shown here:

message: The main message displayed inside the alert. detail: A

secondary message (if needed). title: Title for the dialog window. Not

used on macOS. icon: Icon, one of info (default), or default: Default

button, e.g., ok or cancel for an okcancel dialog. parent: Window of

your application this dialog is being posted for.

Additional details can be found in the reference

 https://tkdocs.com/man/messageBox

These new messagebox dialogs replace the older tk_dialog command,

which does not comply with current platform user interface conventions.

Rolling Your Own

If you need to create your own modal dialogs, there are a few

things you'll need to take care of. We've covered most of them

earlier in the chapter, e.g., setting up window styles, positioning the

window, etc.

 First, you need to ensure that users can only interact with your
dialog. You can use grab_set to do this.

 If you want your dialog function to block your application (i.e.,
the call to create the dialog shouldn't return until the dialog is

dismissed), this is also possible. There's no reason you'd need to do

this, as you can respond to callbacks, event bindings, etc., while

running the normal event loop, destroy the dialog and move on.

 This somewhat cryptic example includes the main steps needed to

create a modal dialog.

ttk.Entry(root).grid() # something to interact with

def dismiss ():

 dlg.grab_release()

 dlg.destroy()

dlg = Toplevel(root)

ttk.Button(dlg, text="Done", command=dismiss).grid()

dlg.protocol("WM_DELETE_WINDOW", dismiss)

intercept close button

dlg.transient(root)

dialog window is related to main

dlg.wait_visibility()

can't grab until window appears, so we wait

dlg.grab_set()

ensure all input goes to our window

dlg.wait_window()

block until window is destroyed

 https://tkdocs.com/code/dialog.py

Application code blocking like this is an example of running a nested

event loop that we generally recommend against, though it may be more

convenient in certain circumstances.

Tkinter's standard library includes a simpledialog module that helps

with building your own dialogs. We don't recommend using it

directly because it uses the classic Tk widgets rather than the newer

themed widgets. However, it does illustrate how to use some of the

techniques for making dialogs behave that we just covered.

12. Organizing Complex Interfaces

If you have a complex user interface, you'll need to find ways to

organize it that don't overwhelm your users. There are several

different approaches to doing this. Both general-purpose and

platform-specific human interface guidelines are good resources

when designing your user interface.

 When we talk about complexity in this chapter, we don't mean

the underlying technical complexity of how the program is

implemented. Instead, we mean how it's presented to users. A

user interface can be pulled together from many different

modules, built from hundreds of widgets combined in a deeply

nested hierarchy, but that doesn't mean users need to perceive it

as complex.

Multiple windows

One benefit of using multiple windows in an application can be

to simplify the user interface. Done well, it can require users to

focus only on the contents of one window at a time to complete

a task. Forcing them to focus on or switch between several

windows can also have the opposite effect. Similarly, showing only

the widgets relevant to the current task (i.e., via can help simplify

the user interface.

White space

If you do need to display a large number of widgets onscreen at

the same time, think about how to organize them visually. We've

seen how grid makes it easy to align widgets with each other.

White space is another useful aid. Place related widgets close to

each other (possibly with an explanatory label immediately above)

and separate them from other widgets by white space. This helps

users organize the user interface in their own minds.

The recommended amount of white space around different widgets,

between groups of widgets, around borders, etc., is highly platform-

specific. While you can do an adequate job without worrying about

exact pixel numbers, you'll need to tune this for each platform if you

want a highly polished user interface.

12.1. Separator

 ttk.Separator

 https://tkdocs.com/man/ttk_separator

A second approach to grouping widgets in one display is to place

a thin horizontal or vertical rule between groups of widgets; often,

this can be more space-efficient than using white space, which

may be relevant for a tight display. Tk provides a simple

separator widget for this purpose.

Separator widgets.

Separators are created using the ttk.Separator class:

s = orient=HORIZONTAL)

The orient option may be specified as either horizontal or

12.2. Label Frames

 ttk.Labelframe

 https://tkdocs.com/man/ttk_labelframe

A labelframe widget, also commonly known as a group provides

another way to group related components. It acts like a normal

in that it contains other widgets that you grid inside it. However,

it is visually set off from the rest of the user interface. You can

optionally provide a text label to be displayed outside the

labelframe.

Labelframe widgets.

Labelframes are created using the ttk.Labelframe class:

lf = text='Label')

12.3. Paned Windows

 ttk.Panedwindow

 https://tkdocs.com/man/ttk_panedwindow

A panedwindow widget lets you stack two or more resizable

widgets above and below each other (or to the left and right).

Users can adjust their relative heights (or widths) by dragging a

sash located between the panes. Typically the widgets you're

adding to a panedwindow will be frames containing many other

widgets.

Panedwindow widgets (shown here managing several labelframes).

Panedwindows are created using the ttk.Panedwindow class:

p = orient=VERTICAL) # two panes, each of which would get

widgets gridded into it:

f1 = ttk.Labelframe(p, text='Pane1', width=100, height=100)

f2 = ttk.Labelframe(p, text='Pane2', width=100, height=100)

p.add(f1)

p.add(f2)

A panedwindow is either vertical (its panes are stacked vertically

on top of each other) or Importantly, each pane you add to the

panedwindow must be a direct child of the panedwindow itself.

 Calling the add method adds a new pane at the end of the

list of panes. The insert position subwindow method allows you to

place the pane at the given position in the list of panes (0..n-1).

If the pane is already managed by the panedwindow, it will be

moved to the new position. You can use the forget subwindow to

remove a pane from the panedwindow (you can also pass a

position instead of a subwindow).

 You can assign relative weights to each pane so that if the
overall panedwindow resizes, certain panes will be allocated more

space than others. As well, you can adjust the position of each

sash between items in the panedwindow. See the command

reference for details.

 https://tkdocs.com/man/ttk_panedwindow

12.4. Notebook

 ttk.Notebook

 https://tkdocs.com/man/ttk_notebook

A notebook widget uses the metaphor of a tabbed notebook to let

users switch between one of several pages using an index Unlike

with paned windows, users only see a single page (akin to a

pane) at a time.

Notebook widgets.

Notebooks are created using the ttk.Notebook class:

n =

)

f1 = ttk.Frame(n)

first page, which would get widgets gridded into it

f2 = ttk.Frame(n)

second page

n.add(f1, text='One')

n.add(f2, text='Two')

The operations on tabbed notebooks are similar to those on

panedwindows. Each page is typically a frame and again must be

a direct child (subwindow) of the notebook itself. Add a new

page and its associated tab after the last tab with the add

subwindow ?option value...? method. The text tab option sets the

label on the tab; also useful is the state tab option, which can

have the value disabled (not selectable), or

 To insert a tab at somewhere other than the end of the list,

use the insert position subwindow ?option and to remove a given

tab, use the forget method, passing it either the position (0..n-1)

or the tab's subwindow. You can retrieve the list of all

subwindows contained in the notebook via the tabs method.

 To retrieve the currently selected subwindow, call the select
method, and change the selected tab by passing either the tab's

position or the subwindow itself as a parameter.

 To change a tab option (like the text label on the tab or its
state), you can use the method (where tabid is again the tab's

position or subwindow); omit the to return the current value of

the option.

 Notebook widgets generate a <> virtual event whenever a new

tab is selected.

 Again, there are a variety of less frequently used options and
commands detailed in the command

 https://tkdocs.com/man/ttk_notebook

13. Fonts, Colors, Images

This chapter describes how Tk handles fonts, colors, and images.

We've touched on all of these before, but here we'll provide a

more in-depth treatment.

13.1. Fonts

Tk's label widget allows you to change the font used to display

text via the font configuration option. The canvas and text

widgets, covered in the following chapters, also allow you to

specify fonts. Other themed widgets that display text may not

have a font configuration option, but their fonts can be changed

using styles.

We'll cover styles in detail later. In essence, they replace the old way

of tweaking multiple configuration options on individual widgets.

Instead, fonts, colors, and other settings that control appearance can

be bundled together in a style. That style can then be applied to

multiple widgets. It's akin to the difference between hardcoding

display-oriented markup inside HTML pages vs. using CSS to keep

display-specific information separate.

As with many things in Tk, the default fonts are usually a good

choice. If you need to make changes, this section shows you the

best way to do so, using named Tk includes named fonts suitable

for use in all different components of your user interface. They

take into account the conventions of the specific platform you're

running on. You can also specify your own fonts when you need

additional flexibility.

 The font command reference provides full details on specifying

fonts, as well as other font-related operations.

 https://tkdocs.com/man/font

Many older Tk programs hardcoded fonts, using either the "family size

style" format we'll see below, X11 font names, or the older and more

arcane X11 font specification strings. These applications looked

increasingly dated as platforms evolved. Worse, fonts were often

specified on a per-widget basis, leaving font decisions spread

throughout the code. Named fonts, particularly the standard fonts that

Tk provides, are a far better solution. Reviewing and updating font

decisions is an easy and important change to make in any existing

application.

Standard Fonts

Each platform defines specific fonts that should be used for

standard user interface elements. Tk encapsulates many of these

decisions into a standard set of named fonts. They are available

on all platforms, though the exact font used will vary. This helps

abstract away platform differences. Of course, the standard

widgets use these named fonts. The predefined fonts are:

TkDefaultFont: Default for items not otherwise specified.

TkTextFont: Used for entry widgets, listboxes, etc. TkFixedFont: A

standard fixed-width font. TkMenuFont: The font used for menu

items. TkHeadingFont: Font for column headings in lists and

tables. TkCaptionFont: A font for window and dialog caption bars.

TkSmallCaptionFont: A smaller caption font for tool dialogs.

TkIconFont: A font for icon captions. TkTooltipFont: A font for

tooltips.

Platform-Specific Fonts

Tk provides additional named fonts to help you comply with less

common situations on specific platforms. Individual platform

guidelines detail how and where these fonts should be used.

These fonts are only defined on specific platforms. You'll need to

take that into account if your application is portable across

platforms.

 Tk on X11 recognizes any valid X11 font name (see, e.g., the

xlsfonts command). However, these can vary with the operating

system, installed software, and the configuration of the individual

machine. There is no guarantee that a font available on your X11

system has been installed on any other X11 system.

 On Windows, Tk provides named fonts for all the fonts that

can be set in the "Display" Control Panel. It recognizes the

following font names: and

 On macOS, the Apple Human Interface Guidelines (HIG)

specifies a number of additional fonts. Tk recognizes the following

names: and

Working with Named Fonts

Tk provides several operations that help you work with named

fonts. You can start by getting a list of all the currently defined

named fonts.

from tkinter import font

font.names()

You can find out the actual system font represented by an

abstract named font. This consists of the family (e.g., Times or

the size (in points if positive, in pixels if negative), the weight or

the slant or and boolean attributes for underline and You can

find out the font's metrics (how tall characters in the font can be

and whether it is monospaced), and even measure how many

pixels wide a piece of text rendered in the font would be.

>>> from tkinter import font

>>>

f = font.nametofont('TkTextFont')

>>>

f.actual()

{'family': '.AppleSystemUIFont', 'size': 13, 'weight': 'normal', 'slant':

'roman', 'underline': 0, 'overstrike': 0}

>>>

f.metrics()

{'ascent': 13, 'descent': 3, 'linespace': 16, 'fixed': 0}

>>>

f.measure('The quick brown fox')

124

Tkinter provides a Font class to hold information about a named

font. You can create an instance of this class from the name of

a font using the nametofont function. When you use named fonts

in your application (e.g., via a label's font configuration option),

you can supply either the font name (as a string) or a Font

instance.

Trying these in an interactive shell and got an error? Even though

we're not displaying anything onscreen, you need to initialize Tk before

using the various font functions.

You can also create your own fonts, which can then be used

exactly like the predefined ones. To do so, choose a name for the

font and specify its font attributes as above.

from tkinter import font

highlightFont = font.Font(family='Helvetica',

name='appHighlightFont', size=12, weight='bold')

ttk.Label(root, text='Attention!', font=highlightFont).grid()

If you don't supply a name, Tkinter will generate one, which you

can retrieve via or It's usually best to supply one.

 The family attribute specifies the font family. Tk ensures the

names and Helvetica are available, though they may be mapped

to an appropriate monospaced, serif, or sans-serif font). Other

fonts installed on your system can be used, but the usual caveats

about portability apply. You can get the names of all available

families with:

font.families()

You can change the attributes of a named font using its configure

method. You might do this in response to menu options allowing

users to zoom in or out, i.e., increasing or decreasing font sizes.

Font Descriptions

Another way to specify fonts is via a list of attributes, starting

with the font family, and optionally including a size and one or

more style options. Some examples of this are Helvetica Helvetica

12 and Helvetica 12 bold These font descriptions can be used

anywhere you'd use a named font, e.g., a font configuration

option.

In general, switching from font descriptions to named fonts is

advisable to isolate font differences in one location in the program.

13.2. Colors

As with fonts, there are various ways to specify colors. Full

details can be found in the colors command

 https://tkdocs.com/man/colors

In general, Tk widgets default to the right colors for most

situations. If you'd like to change colors, you'll do so via widget-

specific commands or options, e.g., the label's foreground and

background configuration options. For most themed widgets, color

changes are specified through styles, not by changing the widget

directly.

 You can specify colors via RGB, as you would in HTML or

CSS, e.g. #3FF or Tk also recognizes names such as light etc.

Tk recognizes the standard names for colors defined by X11. You can

find a complete list in the command reference (noted above).

As with fonts, both macOS and Windows specify many system-

specific abstract color names (again, see the reference). The

actual color these correspond to may depend on system settings

and can change over time, e.g., dark mode, text highlight colors,

default backgrounds.

 If needed, you can find the RGB values (each between 0 and
65535) for a color using the winfo_rgb method on any widget.

root.winfo_rgb('red')

It should probably go without saying, but restraint in the use of

colors is highly advisable!

13.3. Images

We've seen the basics of using images already, displaying them in

labels or buttons, for example. We create an image object, usually

from a file on disk.

imgobj = PhotoImage(file='myimage.gif ')

label['image'] = imgobj

Out of the box, Tk 8.5 includes support for GIF and PPM/PNM

images. Tk 8.6 added PNG to this short list. However, a Tk

extension library called Img adds support for many others: BMP,

XBM, XPM, JPEG, PNG (if you're using 8.5), TIFF, etc. Though not

included directly in the Tk core, Img is usually included with

other packaged distributions (e.g., ActiveTcl).

 Instead of using Tk's Img extension, Tkinter uses a made-for-

Python image library called PIL (Python Imaging Library). More

specifically, we'll use a more up-to-date fork of PIL called As it

doesn't come bundled with Python, you'll normally need to install

it. You should be able to do so via, e.g., pip install

from PIL import ImageTk, Image

myimg = ImageTk.PhotoImage(Image.open('myimage.png'))

The ImageTk.PhotoImage call provides a drop-in replacement for

Tk's PhotoImage but supports the broader range of image types.

 Tk's images are actually quite powerful and sophisticated and

provide various ways to inspect and modify images. You can find

out more from the image command reference and the photo

command

 https://tkdocs.com/man/image

 https://tkdocs.com/man/photo

The types of multi-color images we've seen here are referred to in Tk

as photo images. Tk also provides a second type, two-bit bitmap

images, which were widely used in the '90s when most Unix

workstations used quite large (compared with PCs) monitors, but they

were only black and white. Needless to say, color is mostly de rigueur

these days, so updating to full-color images for icons and so on is

highly advisable. Though in what some may consider retro-styling,

some flat and material design schemes have returned to black and

white. Plus ça change...

14. Canvas

 Canvas

 https://tkdocs.com/man/canvas

A canvas widget manages a 2D collection of graphical objects —

lines, circles, text, images, other widgets, and more. Tk's canvas is

an incredibly powerful and flexible widget and truly one of Tk's

highlights. It is suitable for a wide range of uses, including

drawing or diagramming, CAD tools, displaying or monitoring

simulations or actual equipment, and building more complex

widgets out of simpler ones.

 Note: Canvas widgets are part of the classic Tk widgets, not

the themed Tk widgets.

Canvas widgets.

Canvas widgets are created using the Canvas class:

canvas = width=500, height=400, background='gray75')

You'll often provide a width and height, either in pixels or any of

the other standard distance units. As always, you can ask the

geometry manager to expand it to fill the available space in the

window. You might provide a default background color for the

canvas, specifying colors as you learned about in the last chapter.

Canvas widgets also support other appearance options like relief

and borderwidth that we've used before.

 Canvas widgets have a tremendous number of features, and we

won't cover everything here. Instead, we'll start with a simple

example, a freehand sketching tool, and incrementally add new

pieces, each showing another feature of canvas widgets.

14.1. Creating Items

When you create a new canvas widget, it is essentially a large

rectangle with nothing on it, truly a blank canvas, in other words.

To do anything useful with it, you'll need to add items to it.

There are a wide variety of different types of items you can add.

Here, we'll add a simple line item to the canvas.

 To create a line, you need to specify its starting and ending
Coordinates are expressed as the number of pixels away from the

top-left corner, horizontally and vertically, i.e. The pixel at the top-

left corner, known as the has coordinates (0,0). The "x" value

increases as you move to the right, and the "y" value increases

as you move down. A line is described by two points, which we'd

refer to as and This code creates a line from (10,5) to (200,50):

canvas.create_line(10, 5, 200, 50)

The create_line method returns an item id (an integer) that

uniquely refers to this item. We'll see how it can be used shortly.

Often, we don't need to refer to the item later and can ignore

the returned id.

A Simple Sketchpad

Let's start our simple sketchpad example. For now, we'll

implement freehand drawing on the canvas with the mouse. We

create a canvas widget and attach event bindings to it to capture

mouse clicks and drags. When the mouse is first pressed, we'll

remember that location as the "start" of our next line. As the

mouse is moved with the mouse button held down, we create a

line item from this "start" position to the current mouse location.

This current location becomes the "start" position for the next

line item. Every mouse drag creates a new line item.

from tkinter import *

from tkinter import ttk

def savePosn(event):

 global lastx, lasty

 lastx, lasty = event.x, event.y

def addLine(event):

 canvas.create_line((lastx, lasty, event.x, event.y))

 savePosn(event)

root = Tk()

root.columnconfigure(0, weight=1)

root.rowconfigure(0, weight=1)

canvas = Canvas(root)

canvas.grid(column=0, row=0, sticky=(N, W, E, S))

canvas.bind("", savePosn)

canvas.bind("", addLine)

root.mainloop()

 https://tkdocs.com/code/sketch1.py

Again, in this simple example, we're using global variables to

store the start position. In practice, we'd encapsulate all of this in

a Python class. Here's one way we could do that. Note that this

example creates a subclass of which is treated like any other

widget in the code. We could have equally well used a standalone

class, as we did with the "feet to meters" example.

from tkinter import *

from tkinter import ttk

class Sketchpad(Canvas):

 def __init__(self, parent, **kwargs):

 super().__init__(parent, **kwargs)

 self.bind("", self.save_posn)

 self.bind("", self.add_line)

 def save_posn(self, event):

 self.lastx, self.lasty = event.x, event.y

 def add_line(self, event):

 self.create_line((self.lastx, self.lasty, event.x, event.y))

 self.save_posn(event)

root = Tk()

root.columnconfigure(0, weight=1)

root.rowconfigure(0, weight=1)

sketch = Sketchpad(root)

sketch.grid(column=0, row=0, sticky=(N, W, E, S))

root.mainloop()

 https://tkdocs.com/code/sketcho.py

Try it out - drag the mouse around the canvas to create your

masterpiece.

Item Attributes

When creating items, you can also specify one or more item

affecting how it appears. For example, we can specify that the line

should be red and three pixels wide.

canvas.create_line(10, 10, 200, 50, fill='red', width=3)

The exact set of attributes will vary according to the type of item.

Some commonly used ones are:

fill: color to draw the object width: line width of the item (or its

outline) outline: for filled shapes like rectangles, the color to draw

the item's outline dash: draw a dashed line instead of a solid

one, e.g., 2 4 6 4 alternates short (2 pixels) and long (6 pixels)

dashes with 4 pixels between stipple: instead of a solid fill color,

use a pattern, typically or stippling is currently not supported on

macOS state: assign a state of normal (default), disabled (item

event bindings are ignored), or hidden (removed from display)

disabledfill, disabledwidth, ...: if the item's state is set to the item

will display using these variants of the usual attributes activefill,

activewidth, ...: when the mouse pointer is over the item, it will

display using these variants of the usual attributes

If you have canvas items that change state, creating the item with

both the regular and attribute variants can simplify your code. You

simply need to change the item's state rather than writing code to

change multiple display attributes. The same applies to the attribute

variants. Both encourage a more declarative style that can remove a

lot of boilerplate code.

Just like with Tk widgets, you can change the attributes of canvas

items after they're created.

id = canvas.create_line(0, 0, 10, 10, fill='red')

...

canvas.itemconfigure(id, fill='blue', width=2)

Item Types

Canvas widgets support a wide variety of item types.

Line

Our sketchpad created simple line items, each a single segment

with a start point and an end point. Lines items can also consist

of multiple segments.

canvas.create_line(10, 10, 200, 50, 90, 150, 50, 80)

Lines have several interesting additional attributes, allowing for

drawing curves, arrows, and more.

arrow: place an arrowhead at the start end or both ends default

is none arrowshape: allows changing the appearance of any

arrowheads capstyle: for wide lines without arrowheads, this

controls how the end of lines are drawn; one of butt (default), or

round joinstyle: for wide lines with multiple segments, this

controls drawings of each vertex; one of round (default), or miter

smooth: if specified as true (or draws a smooth curve (via

quadratic splines) between multiple segments rather than using

straight lines; raw specifies a different type of curve (cubic

splines) splinesteps: controls the smoothness of curved lines, i.e.,

those with the smooth option set

Rectangle

Rectangles are specified by the coordinates of opposing corners,

e.g., top-left and bottom-right. They can be filled in (via with one

color, and the outline given a different color.

canvas.create_rectangle(10, 10, 200, 50, fill='red', outline='blue')

Oval

Ovals items work exactly the same as rectangles.

canvas.create_oval(10, 10, 200, 150, fill='red', outline='blue')

Polygon

Polygon items allow you to create arbitrary shapes as defined by

a series of points. The coordinates are given in the same way as

multipoint lines. Tk ensures the polygon is "closed," attaching the

last point to the first if needed. Like ovals and rectangles, they

can have separate fill and outline colors. They also support the

and splinesteps attributes of line items.

canvas.create_polygon(10, 10, 200, 50, 90, 150, 50, 80, 120, 55,

fill='red', outline='blue')

Arc

Arc items draw a portion of an oval; think of one piece of a pie

chart. Its display is controlled by three attributes:

how far along the oval the arc should start, in degrees (0 is the

3-o'clock position)

The how many degrees "wide" the arc should be, positive for

counter-clockwise from the start, negative for clockwise

one of pieslice (the default), arc (draws just the outer perimeter),

or chord (draws the area between a line connecting the start and

end points of the arc and the outer perimeter).

canvas.create_arc(10, 10, 200, 150, fill='yellow', outline='black',

start=45, extent=135, width=5)

Image

Image items can display arbitrary images. By default, the item is

centered at the coordinates you specify, but this can be changed

with the anchor option, e.g., nw means the coordinates are where

to put the top-left of the image.

myimg = PhotoImage(file='pretty.png')

canvas.create_image(10, 10, image=myimg, anchor='nw')

There's also a bitmap item type for images having only two

colors, which can be changed via foreground and They're not

commonly used these days.

Text

Text items can display a block of text. Positioning the text works

the same as with image items. Specify the text to display using

the text attribute. All of the text in the item will have the same

color (specified by the fill attribute) and the same font (specified

by a font attribute).

 The text item can display multiple lines of text if you embed

\n in the text. Alternatively, you can have the item automatically

wrapped into multiple lines by providing a width attribute to

represent the maximum width of a line. The alignment of multiple

lines of text can be set using the justify attribute, which can be

one of left (the default), or

canvas.create_text(100, 100, text='A wonderful story', anchor='nw',

font='TkMenuFont', fill='red')

Widget

One of the coolest things you can do with the canvas widget is

embed other widgets inside it. This can be a lowly button, an

entry (think in-place editing of text items), a listbox, a frame itself

containing a complex set of widgets... anything! Remember when

we said way back when that a canvas widget could act as a

geometry manager? This is what we meant.

 Canvas items that display other widgets are known as window

items (Tk's longstanding terminology for widgets). They are

positioned like text and image items. You can give them explicit

width and height attributes; they default to the widget's preferred

size. Finally, it's important that the widget you're placing on the

canvas (via the attribute be a child widget of the canvas.

b = ttk.Button(canvas, text='Implode!')

canvas.create_window(10, 10, anchor='nw', window=b)

Modifying Items

We've seen how you can modify the configuration options on an

item — its color, width, etc. There are several other things you

can do with items.

 To delete items, use the delete method.

 To change an item's size and position, you can use the coords

method. You supply new coordinates for the item, specified the

same way as when you first created it. Calling this method

without a new set of coordinates will return the current

coordinates of the item. You can use the move method to offset

one or more items horizontally or vertically from their current

position.

 All items are ordered from top to bottom in what's called the

stacking order. If an item later in the stacking order overlaps an

item below it, the first item will be drawn on top of the second.

The lift and lower methods allow you to adjust an item's position

in the stacking order.

 There are several more operations detailed in the reference

manual to modify items and retrieve information about them.

14.2. Event Bindings

We've already seen that the canvas widget as a whole, like any

other Tk widget, can capture events using the bind command.

 You can also attach bindings to individual items in the canvas

(or groups of them, as we'll see in the next section using tags).

So if you want to know whether or not a particular item has

been clicked on, you don't need to watch for mouse click events

for the canvas as a whole and then figure out if that click

happened on your item. Tk will take care of all this for you.

 To capture these events, you use a bind command built into

the canvas. It works exactly like the regular bind command, taking

an event pattern and a callback. The only difference is you specify

the canvas item this binding applies to.

canvas.tag_bind(id, '<1>', ...)

Note the difference between the item-specific tag_bind method and the

widget-level bind method.

Let's add some code to our sketchpad example to allow changing

the drawing color. We'll first create a few different rectangle items,

each filled with a different color. We'll then attach a binding to

each of these. When they're clicked on, they'll set a global

variable to the new drawing color. Our mouse motion binding will

look at that variable when creating the line segments.

color = "black"

def setColor(newcolor):

 global color

 color = newcolor

def addLine(event):

 global lastx, lasty

 canvas.create_line((lastx, lasty, event.x, event.y), fill=color)

 lastx, lasty = event.x, event.y

id = canvas.create_rectangle((10, 10, 30, 30), fill="red")

canvas.tag_bind(id, "", lambda x: setColor("red"))

id = canvas.create_rectangle((10, 35, 30, 55), fill="blue")

canvas.tag_bind(id, "", lambda x: setColor("blue"))

id = canvas.create_rectangle((10, 60, 30, 80), fill="black")

canvas.tag_bind(id, "", lambda x: setColor("black"))

 https://tkdocs.com/code/sketch2.py

14.3. Tags

We've seen that every canvas item can be referred to by a unique

id number. There is another handy and powerful way to refer to

items on a canvas, using

 A tag is just an identifier of your creation, something

meaningful to your program. You can attach tags to canvas

items; each item can have any number of tags. Unlike item id

numbers, which are unique for each item, many items can share

the same tag.

 What can you do with tags? We saw that you can use the

item id to modify a canvas item (and we'll see soon there are

other things you can do to items, like move them around, delete

them, etc.). Any time you can use an item id, you can use a tag.

For example, you can change the color of all items having a

specific tag.

 Tags are a good way to identify collections of items in your

canvas (items in a drawn line, items in a palette, etc.). You can

use tags to correlate canvas items to particular objects in your

application (for example, tag all canvas items that are part of the

robot with id #X37 with the tag "robotX37"). With tags, you don't

have to keep track of the ids of canvas items to refer to groups

of items later; tags let Tk do that for you.

 You can assign tags when creating an item using the tags item

configuration option. You can add tags later with the addtag

method or remove them with the dtags method. You can get the

list of tags for an item with the gettags method or return a list

of item id numbers having the given tag with the find command.

 For example:

>>> c = Canvas(root)

>>> c.create_line(10, 10, 20, 20, tags=('firstline', 'drawing'))

1

>>> c.create_rectangle(30, 30, 40, 40, tags=('drawing'))

2

>>> c.addtag('rectangle', 'withtag', 2)

>>> c.addtag('polygon', 'withtag', 'rectangle')

>>> c.gettags(2)

('drawing', 'rectangle', 'polygon')

>>> c.dtag(2, 'polygon')

>>> c.gettags(2)

('drawing', 'rectangle')

>>> c.find_withtag('drawing')

(1, 2)

As you can see, methods like withtag accept either an individual

item or a tag; in the latter case, they will apply to all items

having that tag (which could be none). The addtag and find

methods have many other options, allowing you to specify items

near a point, overlapping a particular area, etc.

 Let's use tags first to put a border around whichever item in

our color palette is currently selected.

def setColor(newcolor):

 global color

 color = newcolor

 canvas.dtag('all', 'paletteSelected')

 canvas.itemconfigure('palette', outline='white')

 canvas.addtag('paletteSelected', 'withtag', 'palette%s' % color)

 canvas.itemconfigure('paletteSelected', outline='#999999')

id = canvas.create_rectangle((10, 10, 30, 30), fill="red", tags=

('palette', 'palettered'))

id = canvas.create_rectangle((10, 35, 30, 55), fill="blue", tags=

('palette', 'paletteblue'))

id = canvas.create_rectangle((10, 60, 30, 80), fill="black", tags=

('palette', 'paletteblack', 'paletteSelected'))

setColor('black')

canvas.itemconfigure('palette', width=5)

Let's also use tags to make the current stroke being drawn

appear more prominent. When the mouse button is released, we'll

return the line to normal.

def addLine(event):

 global lastx, lasty

 canvas.create_line((lastx, lasty, event.x, event.y), fill=color,

width=5, tags='currentline')

 lastx, lasty = event.x, event.y

def doneStroke(event):

 canvas.itemconfigure('currentline', width=1)

canvas.bind("", doneStroke)

 https://tkdocs.com/code/sketch3.py

14.4. Scrolling

In many applications, you'll want the canvas to be larger than

what appears on the screen. You can attach horizontal and

vertical scrollbars to the canvas in the usual way via the xview

and yview methods.

 You can specify both how large you'd like it to be on screen
and its full size (which would require scrolling to see). The width

and height configuration options control how much space the

canvas widget requests from the geometry manager. The

scrollregion configuration option tells Tk how large the canvas

surface is by specifying its left, top, right, and bottom

coordinates, e.g., 0 0 1000

 You should be able to modify the sketchpad program to add

scrolling, given what you already know. Give it a try.

 Once you've done that, scroll the canvas down just a little bit,

and then try drawing. You'll see that the line you're drawing

appears above where the mouse is pointing! Surprised?

 What's going on is that the global bind command doesn't

know that the canvas is scrolled (it doesn't know the details of

any particular widget). So if you've scrolled the canvas down by

50 pixels, and you click on the top left corner, bind will report

that you've clicked at (0,0). But we know that because of the

scrolling, that position should really be (0,50).

 The canvasx and canvasy methods translate the position

onscreen (which bind reports) into the actual point on the canvas

(taking into account scrolling).

Be careful if you're adding canvasx and canvasy methods directly to

the event binding scripts. You need to watch the quoting and

substitutions to ensure the conversions are done when the event fires.

As always, it's better to place that code in a procedure separate from

the event binding itself.

Here then, is our complete example. We probably don't want the

palette to be scrolled away when the canvas is scrolled, but we'll

leave that for another day.

from tkinter import *

from tkinter import ttk

root = Tk()

h = ttk.Scrollbar(root, orient=HORIZONTAL)

v = ttk.Scrollbar(root, orient=VERTICAL)

canvas = Canvas(root, scrollregion=(0, 0, 1000, 1000),

yscrollcommand=v.set, xscrollcommand=h.set)

h['command'] = canvas.xview

v['command'] = canvas.yview

canvas.grid(column=0, row=0, sticky=(N,W,E,S))

h.grid(column=0, row=1, sticky=(W,E))

v.grid(column=1, row=0, sticky=(N,S))

root.grid_columnconfigure(0, weight=1)

root.grid_rowconfigure(0, weight=1)

lastx, lasty = 0, 0

def xy(event):

 global lastx, lasty

 lastx, lasty = canvas.canvasx(event.x), canvas.canvasy(event.y)

def setColor(newcolor):

 global color

 color = newcolor

 canvas.dtag('all', 'paletteSelected')

 canvas.itemconfigure('palette', outline='white')

 canvas.addtag('paletteSelected', 'withtag', 'palette%s' % color)

 canvas.itemconfigure('paletteSelected', outline='#999999')

def addLine(event):

 global lastx, lasty

 x, y = canvas.canvasx(event.x), canvas.canvasy(event.y)

 canvas.create_line((lastx, lasty, x, y), fill=color, width=5,

tags='currentline')

 lastx, lasty = x, y

def doneStroke(event):

 canvas.itemconfigure('currentline', width=1)

canvas.bind("", xy)

canvas.bind("", addLine)

canvas.bind("", doneStroke)

id = canvas.create_rectangle((10, 10, 30, 30), fill="red", tags=

('palette', 'palettered'))

canvas.tag_bind(id, "", lambda x: setColor("red"))

id = canvas.create_rectangle((10, 35, 30, 55), fill="blue", tags=

('palette', 'paletteblue'))

canvas.tag_bind(id, "", lambda x: setColor("blue"))

id = canvas.create_rectangle((10, 60, 30, 80), fill="black", tags=

('palette', 'paletteblack', 'paletteSelected'))

canvas.tag_bind(id, "", lambda x: setColor("black"))

setColor('black')

canvas.itemconfigure('palette', width=5)

root.mainloop()

 https://tkdocs.com/code/sketch4.py

15. Text

 Text

 https://tkdocs.com/man/text

A text widget manages a multi-line text area. Like the canvas widget,

Tk's text widget is an immensely flexible and powerful tool that can

be used for a wide variety of tasks. It can provide a simple multi-

line text area as part of a form. But text widgets can also form the

basis for a stylized code editor, an outliner, a web browser, and

much more.

 Note: Text widgets are part of the classic Tk widgets, not the
themed Tk widgets.

Text widgets.

While we briefly introduced text widgets in an earlier chapter, we'll go

into more detail here. You'll get a better sense of the level of

sophistication they allow. Still, if you plan to do any significant work

with the text widget, the reference manual is a well-organized,

helpful, and highly-recommended read.

 Text widgets are created using the Text class:

text = width=40, height=10)

You'll often provide a width (in characters) and height (in lines). As

always, you can ask the geometry manager to expand it to fill the

available space in the window.

15.1. The Basics

If you simply need a multi-line text field for a form, there are

only a few things to worry about: create and size the widget

(check), provide an initial value, and retrieve the text after a user

has submitted the form.

Providing Initial Content

Text widgets start with nothing in them, so we'll need to add any

initial content ourselves. Because text widgets can hold a lot more

than plain text, a simple mechanism (like the entry widget's

textvariable configuration option) isn't sufficient.

 Instead, we'll use the widget's insert method:

text.insert('1.0', 'here is my\ntext to insert')

The "1.0" here is the position where to insert the text, and can

be read as "line 1, character 0". This refers to the first character

of the first line. Historically, especially on Unix, programmers tend

to think about line numbers as 1-based and character positions

as 0-based.

 The text to insert is just a string. Because the widget can hold
multi-line text, the string we supply can be multi-line as well. To

do this, simply embed \n (newline) characters in the string at the

appropriate locations.

Retrieving the Text

After users have made any changes and submitted the form (for

example), your program can retrieve the contents of the widget

via the get method:

thetext = text.get('1.0', 'end')

The two parameters are the start and end position; end has the

obvious meaning. You can provide different start and end

positions if you want to obtain only part of the text. You'll see

more on positions shortly.

Customizing Appearance

We previously saw the width and height configuration options for

text widgets. Several other options control its appearance. The

most useful are:

foreground: color to draw the text in background: background

color of the widget padx, pady: extra padding along the inside

border of the widget borderwidth: width of the border around

widget relief: border style: groove

Wrapping and Scrolling

What if some lines of text in the widget are very long, longer

than the width of the widget? By default, the text wraps around

to the next line. This behavior can be changed with the wrap

configuration option. It defaults to meaning wrap lines at any

character. Other options are word to wrap lines only at word

breaks (e.g., spaces), and none meaning to not wrap lines at all.

In the latter case, some text of longer lines won't be visible

unless we attach a horizontal scrollbar to the widget. (Users can

also scroll through the text using arrow keys, even if scrollbars

aren't present).

 Both horizontal and vertical scrollbars can be attached to the
text widget in the same way as with other widgets, e.g., canvas,

listbox.

t = Text(root, width = 40, height = 5, wrap = ys =

ttk.Scrollbar(root, orient = 'vertical', command = t.yview) xs =

ttk.Scrollbar(root, orient = 'horizontal', command = t.xview)

t['yscrollcommand'] = ys.set t['xscrollcommand'] = xs.set

t.insert('end', "Lorem ipsum...\n...\n...")

t.grid(column = 0, row = 0, sticky = 'nwes')

xs.grid(column = 0, row = 1, sticky = 'we')

ys.grid(column = 1, row = 0, sticky = 'ns')

root.grid_columnconfigure(0, weight = 1)

root.grid_rowconfigure(0, weight = 1)

 https://tkdocs.com/code/scrolledtext.py

We can also ask the widget to ensure that a certain part of the

text is visible. For example, let's say we've added more text to the

widget than will fit onscreen (so it will scroll). However, we want

to ensure that the top of the text rather than the bottom is

visible. We can use the see method.

text.see('1.0')

Disabling the Widget

Some forms will temporarily disable editing in particular widgets

unless certain conditions are met (e.g., some other options are

set to a certain value). To prevent users from changing a text

widget, set the state configuration option to Re-enable editing by

setting this option back to

text['state'] = 'disabled'

As text widgets are part of the classic widgets, the usual state and

instate methods are not available.

15.2. Modifying the Text in Code

While users can modify the text in the text widget interactively,

your program can also make changes. Adding text is done with

the insert method, which we used above to provide an initial

value for the text widget.

Text Positions and Indices

When we specified a position of 1.0 (first line, first character),

this was an example of an It tells the insert method where to put

the new text (just before the first line, first character, i.e., at the

very start of the widget). Indices can be specified in a variety of

ways. We used another one with the get method: end means just

past the end of the text. (Why "just past?" Text is inserted right

before the given index, so inserting at end will add text to the end

of the widget). Note that Tk will always add a newline at the very

end of the text widget.

 Here are a few additional examples of indices and how to

interpret them:

3.end: The newline at the end of line 3. 1.0 + 3 chars: Three

characters past the start of line 1. 2.end -1 chars: The last

character before the new line in line 2. end -1 chars: The newline

that Tk always adds at the end of the text. end -2 chars: The

actual last character of the text. end -1 lines: The start of the last

actual line of text. 2.2 + 2 lines: The third character (index 2) of

the fourth line of text. 2.5 linestart: The first character of line 2.

2.5 lineend: The position of the newline at the end of line 2. 2.5

wordstart: First char. of the word with the char. at index 2.5. 2.5

wordend: First char. after the word with the char. at index 2.5.

Some additional things to keep in mind:

The term chars can be abbreviated as and lines as

Spaces between terms can be omitted, e.g.,

An index past the end of the text (e.g., end + is interpreted as

Indices wrap to subsequent lines as needed; e.g., 1.0 + 10 chars

on a line with only five characters will refer to a position on the

second line.

Line numbers in indices are interpreted as logical lines, i.e., each

line ends only at the "\n." With long lines and wrapping enabled,

one logical line may represent multiple display If you'd like to

move up or down a single line on the display, you can specify

this as, e.g., "1.0 + 2 display lines".

To determine the canonical position of an index, use the index idx

method. Pass it any index expression, and it returns the

corresponding index in the form For example, to find the position

of the last character (ignoring the automatic newline at the end),

use:

text.index('end')

You can compare two indices using the compare method, which

lets you check for equality, whether one index is later in the text

than the other, etc.

if "==", # same position

Valid operators are and

Deleting Text

While the insert method adds new text anywhere in the widget,

the delete start ?end? method removes it. We can delete either a

single character (specified by index) or a range of characters

(specified by start and end indices). In the latter case, characters

from (and including) the start index until just before the end index

are deleted (the character at the end index is not deleted). So if

we assume for each of these we start off with abcd\nefgh in the

text widget:

text.delete('1.2') ⇒
"abd\nefgh"

text.delete('1.1', '1.2')

⇒
"acd\nefgh"

text.delete('1.0', '2.0')

⇒
"efgh"

text.delete('1.2', '2.1')

⇒ "abfgh"

There is also a replace method that performs a delete followed

by an insert at the same location.

Example: Logging Window

Here's a short example using a text widget as an 80x24 logging

window for an application. Users don't edit the text widget at all.

Instead, the program writes log messages to it. We'd like to

display more than 24 lines (so no scrolling). If the log is full,

old messages are removed from the top before new ones are

added at the end.

from tkinter import *

from tkinter import ttk

root = Tk()

log = Text(root, state='disabled', width=80, height=24, wrap='none')

log.grid()

def writeToLog(msg):

 numlines = int(log.index('end - 1 line').split('.')[0])

 log['state'] = 'normal'

 if numlines==24:

 log.delete(1.0, 2.0)

 if log.index('end-1c')!='1.0':

 log.insert('end', '\n')

 log.insert('end', msg)

 log['state'] = 'disabled'

 https://tkdocs.com/code/logwindow.py

Note that because the program placed the widget in a disabled state,

we had to re-enable it to make any changes, even from our program.

15.3. Formatting with Tags

So far, we've used text widgets when all the text is in a single

font. Now it's time to add formatting like bold, italic,

strikethrough, background colors, font sizes, and much more. Tk's

text widget implements these using a feature called

 Tags are objects associated with the text widget. Each tag is
referred to via a name chosen by the programmer. Each tag has

several configuration options. These are things like fonts and

colors that control formatting. Though tags are objects having

state, they don't need to be explicitly created but are automatically

created the first time the tag name is used.

Adding Tags to Text

Tags can be associated with one or more ranges of text in the

widget. As before, ranges are specified via indices. A single index

represents a single character, and a pair of indices represent a

range from the start character to just before the end character.

Tags are added to a range of text using the tag_add method.

text.tag_add('highlightline', '5.0', '6.0')

Tags can also be provided when first inserting text. The insert

method supports an optional parameter containing a list of one

or more tags to add to the text being inserted.

text.insert('end', 'new material to insert', ('highlightline', 'recent',

'warning'))

As the widget's contents are modified (whether by a user or your

program), the tags will adjust automatically. For example, if we

tagged the text "the quick brown fox" with the tag "nounphrase",

and then replaced the word "quick" with "speedy," the tag still

applies to the entire phrase.

Applying Formatting to Tags

Formatting is applied to tags via configuration options; these work

similarly to configuration options for the entire widget. As an

example:

text.tag_configure('highlightline', background='yellow',

font='TkFixedFont', relief='raised')

Tags support the following configuration options: and Check the

reference manual for detailed descriptions of these. The tag_cget

tag option method allows us to query the configuration options of

a tag.

 Because multiple tags can apply to the same range of text,

there is the possibility of conflict (e.g., two tags specifying

different fonts). A priority order is used to resolve these; the most

recently created tags have the highest priority, but priorities can

be rearranged using the tag_raise tag and tag_lower tag methods.

More Tag Manipulations

To delete one or more tags altogether, we can use the tag_delete

tags method. This also, of course, removes any references to the

tag in the text. We can also remove a tag from a range of text

using the tag_remove tag start ?end? method. Even if that leaves

no ranges of text with that tag, the tag object itself still exists.

 The tag_ranges tag method will return a list of ranges in the

text that the tag has been applied to. There are also

tag_nextrange tag start ?end? and tag_prevrange tag start ?end?

methods to search forward or backward for the first such range

from a given position.

 The tag_names ?idx? method, called with no additional

parameters, will return a list of all tags currently defined in the

text widget (including those that may not be presently used). If

we pass the method an index, it will return the list of tags

applied to just the character at the index.

 Finally, we can use the first and last characters in the text
having a given tag as indices, the same way we can use "end" or

"2.5". To do so, just specify or

Differences between Tags in Canvas and Text Widgets

Both canvas and text widgets support "tags" that can be applied

to several objects, style them, etc. However, canvas and text tags

are not the same and there are substantial differences to take

note of.

 In canvas widgets, only individual canvas items have

configuration options that control their appearance. When we refer

to a tag in a canvas, the meaning of that is identical to "all

canvas items presently having that tag." The tag itself doesn't

exist as a separate object. So in the following snippet, the last

rectangle added will not be colored red.

canvas.itemconfigure('important', fill='red')

canvas.create_rectangle(10, 10, 40, 40, tags=('important'))

In contrast, with text widgets, it's not the individual characters

that retain the state information about appearance, but tags,

which are objects in their own right. So in this snippet, the newly

added text will be colored red.

text.insert('end', 'first text', ('important'))

text.tag_configure('important', foreground='red')

text.insert('end', 'second text', ('important'))

15.4. Events and Bindings

One very cool thing we can do is define event bindings on tags.

That allows us to easily do things like recognize mouse clicks on

particular ranges of text and popup a menu or dialog in

response. Different tags can have different bindings. This saves

the hassle of sorting out questions like "what does a click at this

location mean?". Bindings on tags are implemented using the

tag_bind method:

text.tag_bind('important', '<1>', popupImportantMenu)

Widget-wide event bindings continue to work as they do for every

other widget, e.g., to capture a mouse click anywhere in the text.

Besides the normal low-level events, the text widget generates a

<> virtual event whenever a change is made to the content of the

widget, and a <> virtual event whenever there is a change made

to which text is selected.

15.5. Selecting Text

We can identify the range of text selected by a user, if any. For

example, an editor may have a toolbar button to bold the

selected text. While you can tell when the selection has changed

(e.g., to update whether or not the bold button is active) via the

<> virtual event, that doesn't tell you what has been selected.

 The text widget automatically maintains a tag named which

refers to the selected text. Whenever the selection changes, the sel

tag will be updated. So we can find the range of text selected

using the tag_ranges ?tag? method, passing it sel as the tag to

report on.

 Similarly, we can change the selection by using tag_add to set

a new selection, or tag_remove to remove the selection. The sel

tag cannot be deleted, however.

Though the default widget bindings prevent this from happening, sel is

like any other tag in that it can support multiple ranges, i.e., disjoint

selections. To prevent this from happening, when changing the selection

from your code, make sure to remove any old selection before adding

a new one.

The text widget manages the concept of the insertion cursor

(where newly typed text will appear) separate from the selection. It

does so using a new concept called a

15.6. Marks

Marks indicate a particular place in the text. In that respect, they

are like indices. However, as the text is modified, the mark will

adjust to be in the same relative location. In that way, they

resemble tags but refer to a single position rather than a range

of text. Marks actually don't refer to a position occupied by a

character in the text but specify a position between two characters.

 Tk automatically maintains two different marks. The first,

named is the present location of the insertion cursor. As the

cursor is moved (via mouse or keyboard), the mark moves with

it. The second mark, named tracks the position of the character

underneath the current mouse position.

 To create your own marks, use the widget's mark_set name idx

method, passing it the name of the mark and an index (the mark

is positioned just before the character at the given index). This is

also used to move an existing mark to a different position. Marks

can be removed using the mark_unset name method, passing it

the name of the mark. If you delete a range of text containing a

mark, that also removes the mark.

 The name of a mark can also be used as an index (in the

same way 1.0 or end-1c are indices). You can find the next mark

(or previous one) from a given index in the text using the

mark_next idx or mark_previous idx methods. The mark_names

method will return a list of the names of all marks.

 Marks also have a which can be modified with the

mark_gravity name ?direction? method, which affects what happens

when text is inserted at the mark. Suppose we have the text "ac"

with a mark in between that we'll symbolize with a pipe, i.e.,

"a|c." If the gravity of that mark is right (the default), the mark

attaches itself to the "c." If the new text "b" is inserted at the

mark, the mark will remain stuck to the "c," and so the new text

will be inserted before the mark, i.e., "ab|c." If the gravity is

instead the mark attaches itself to the "a," and so new text will

be inserted after the mark, i.e., "a|bc."

15.7. Images and Widgets

Like canvas widgets, text widgets can contain images and any

other Tk widgets (including frames containing many other

widgets). In a sense, this allows the text widget to work as a

geometry manager in its own right. The ability to add images and

widgets within the text opens up a world of possibilities for your

program.

 Images are added to a text widget at a particular index, with

the image specified as an existing Tk image. Other options that

allow you to fine-tune padding, etc.

flowers = PhotoImage(file='flowers.gif ')

text.image_create('sel.first', image=flowers)

Other widgets are added to a text widget in much the same way

as images. The widget being added must be a descendant of the

text widget in the widget hierarchy.

b = ttk.Button(text, text='Push Me')

text.window_create('1.0', window=b)

15.8. Even More

Text widgets can do many more things. Here, we'll briefly mention

just a few more of them. For details on any of these, see the

reference manual.

Search

The text widget includes a powerful search method to locate a

piece of text within the widget. This is useful for a "Find" dialog,

as one obvious example. You can search backward or forward

from a particular position or within a given range, specify the

search term using exact text, case insensitive, or via regular

expressions, find one or all occurrences of the search term, etc.

Modifications, Undo and Redo

The text widget keeps track of whether changes have been made

(useful to know whether it needs to be saved to a file, for

example). We can query (or change) using the edit_modified ?

bool? method. There is also a complete multi-level undo/redo

mechanism, managed automatically by the widget when we set its

undo configuration option to Calling edit_undo or edit_redo

modifies the current text using information stored on the

undo/redo stack.

Eliding Text

Text widgets can include text that is not displayed. This is known

as "elided" text, and is made available using the elide

configuration option for tags. It can be used to implement an

outliner, a "folding" code editor, or even to bury extra meta-data

intermixed with displayed text. When specifying positions within

elided text, you have to be a bit more careful. Methods that work

with positions have extra options to either include or ignore the

elided text.

Introspection

Like most Tk widgets, the text widget goes out of its way to

expose information about its internal state. We've seen this in

terms of the get method, widget configuration options, names and

cget for both tags and marks, etc. There is even more

information available that can be useful for a wide variety of

tasks. Check out the and dump methods in the reference manual.

Peering

The Tk text widget allows the same underlying text data structure

(containing all the text, marks, tags, images, etc.) to be shared

between two or more different text widgets. This is known as

peering and is controlled via the peer method.

16. Treeview

 ttk.Treeview

 https://tkdocs.com/man/ttk_treeview

A treeview widget displays a hierarchy of items and allows users

to browse through it. One or more attributes of each item can

be displayed as columns to the right of the tree. It can be used

to build user interfaces similar to the tree display you'd find in

file managers like the macOS Finder or Windows Explorer. As with

most Tk widgets, it offers incredible flexibility so it can be

customized to suit a wide range of situations.

Treeview widgets.

Treeview widgets are created using the ttk.Treeview class:

tree =

Horizontal and vertical scrollbars can be added in the usual

manner if desired.

16.1. Adding Items to the Tree

To do anything useful with the treeview, we'll need to add one or

more items to it. Each item represents a single node in the tree,

whether a leaf node or an internal node containing other nodes.

Items are referred to by a unique id. You can assign this id when

the item is first created, or the widget can automatically generate

one.

 Items are created by inserting them into the tree, using the

treeview's insert method. To insert an item, we need to know

where to insert it. That means specifying the parent item and

where within the list of the parent's existing children the new item

should be inserted.

 The treeview widget automatically creates a root node (which is

not displayed). Its id is the empty string. It serves as the parent

of the first level of items that are added. Positions within the list

of a node's children are specified by index (0 being the first, and

end meaning insert after all existing children).

 Normally, you'll also specify the name of each item, which is

the text displayed in the tree. Other options allow you to add an

image beside the name, specify whether the node is open or

closed, etc.

Inserted at the root, program chooses id:

tree.insert('', 'end', 'widgets', text='Widget Tour')

Same thing, but inserted as first child:

tree.insert('', 0, 'gallery', text='Applications')

Treeview chooses the id:

id = tree.insert('', 'end', text='Tutorial')

Inserted underneath an existing node:

tree.insert('widgets', 'end', text='Canvas')

tree.insert(id, 'end', text='Tree')

Inserting the item returns the id of the newly created item.

16.2. Rearranging Items

A node (and its descendants, if any) can be moved to a different

location in the tree. The only restriction is that a node cannot be

moved underneath one of its descendants for obvious reasons. As

before, the target location is specified via a parent node and a

position within its list of children.

tree.move('widgets', 'gallery', 'end') # move widgets under gallery

Items can be detached from the tree. This removes the item and

its descendants from the hierarchy but does not destroy the

items. This allows us to later reinsert them with

tree.detach('widgets')

Items can also be which does completely destroy the item and its

descendants.

tree.delete('widgets')

To traverse the hierarchy, there are methods to find the parent of

an item its next or previous sibling item and prev and return the

list of children of an item

 We can control whether or not the item is open and shows its

children by modifying the open item configuration option.

tree.item('widgets', open=TRUE)

isopen = tree.item('widgets', 'open')

16.3. Displaying Information for each Item

The treeview can display one or more additional pieces of

information about each item. These are shown as columns to the

right of the main tree display.

 Each column is referenced by a symbolic name that we assign.

We can specify the list of columns using the columns

configuration option of the treeview widget, either when first

creating the widget or later on.

tree = ttk.Treeview(root, columns=('size', 'modified'))

tree['columns'] = ('size', 'modified', 'owner')

We can specify the width of the column, how the display of item

information in the column is aligned, and more. We can also

provide information about the column's heading, such as the text

to display, an optional image, alignment, and a script to invoke

when the item is clicked (e.g., to sort the tree).

tree.column('size', width=100, anchor='center')

tree.heading('size', text='Size')

What to display in each column for each item can be specified

individually by using the set method. You can also provide a list

describing what to display in all the columns for the item. This

is done using the values item configuration option. It takes a list

of values and can be provided when first inserting the item or

changed later. The order of the list must be the same as the

order in the columns widget configuration option.

tree.set('widgets', 'size', '12KB')

size = tree.set('widgets', 'size')

tree.insert('', 'end', text='Listbox', values=('15KB', 'Yesterday', 'mark'))

16.4. Item Appearance and Events

Like the text and canvas widgets, the treeview widget uses tags to

modify the appearance of items in the tree. We can assign a list

of tags to each item using the tags item configuration option

(again, when creating the item or later on).

 Configuration options can then be specified on the tag, applied
to all items having that tag. Valid tag options include foreground

(text color), and image (not used if the item specifies its own

image).

 We can also create event bindings on tags to capture mouse

clicks, keyboard events, etc.

tree.insert('', 'end', text='button', tags=('ttk', 'simple'))

tree.tag_configure('ttk', background='yellow')

tree.tag_bind('ttk', '<1>', itemClicked)

the item clicked can be found via tree.focus()

The treeview will generate virtual events and which allow us to

monitor changes to the widget made by users. We can use the

selection method to determine the current selection (the selection

can also be changed from your program).

16.5. Customizing the Display

There are many aspects of how the treeview widget is displayed

that we can customize. We've already seen some of them, such

as the text of items, fonts and colors, names of column

headings, and more. Here are a few additional ones.

Specify the desired number of rows to show using the height

widget configuration option.

Control the width of each column using the column's width or

minwidth options. The column holding the tree can be accessed

with the symbolic name The overall requested width for the

widget is based on the sum of the column widths.

Choose which columns to display and the order to display them

in using the displaycolumns widget configuration option.

You can optionally hide one or both of the column headings or

the tree itself (leaving just the columns) using the show widget

configuration option (default is "tree headings" to show both).

You can specify whether a single item or multiple items can be

selected by users via the selectmode widget configuration option,

passing browse (single item), extended (multiple items, the

default), or

17. Styles and Themes

The themed aspect of the modern Tk widgets is one of the most

powerful and exciting aspects of the newer widget set. Yet, it's also

one of the most confusing.

 This chapter explains styles (which control how widgets like
buttons look) and themes (which are a collection of styles that

define how all the widgets in your application look). Changing

themes can give your application an entirely different look.

Applying different themes.

Note that it's not just colors that have changed, but the actual

shape of individual widgets. Styles and themes are extremely flexible.

Why?

However, before you get carried away, very few applications will

benefit from switching themes like this. Some games or educational

programs might be exceptions. Using the standard Tk theme for a

given platform will display widgets the way people expect to see

them, particularly if they're running macOS and Windows.

On Linux systems, there's far less standardization of look and feel. Users

expect (and are more comfortable with) some variability and "coolness."

Because different widget sets (typically GTK and QT) are used by window

managers, control panels, and other system utilities, Tk can't seamlessly

blend in with the current settings on any particular system. Most of the

Linux screenshots in this book use Tk's alt theme. Despite users being

accustomed to variability, there are limits to what most users will accept.

A prime example is the styling of core widgets in Tk's classic widget set,

matching circa-1992 OSF/Motif.

Styles and themes, used in a more targeted manner and with

significant restraint, can have a role to play in modern applications.

This chapter explains why and when you might want to use them

and how to go about doing so. We'll begin by drawing a parallel

between Tk's styles and themes and another realm of software

development.

Understanding Styles and Themes

If you're familiar with web development, you know about cascading

stylesheets (CSS). There are two ways it can be used to customize

the appearance of an element in your HTML page. One way is to

add a bunch of style attributes (fonts, colors, borders, etc.) directly

to an element in your HTML code via the style attribute. For

example:

style="color:red; font-size:14pt; font-weight:bold; background-

color:yellow;">Meltdown imminent!

The other way to use CSS is to attach a class to each widget via the

class attribute. The details of how elements of that class appear are

provided elsewhere, often in a separate CSS file. You can attach the

same class to many elements, and they will all have the same

appearance. You don't need to repeat the full details for every

element. More importantly, you separate the logical content of your

site (HTML) from its appearance (CSS).

class="danger">Meltdown imminent!

...

Back to Tk.

In the classic Tk widgets, all appearance customizations require

specifying each detail on individual widgets, akin to always using the

style HTML attribute.

In the themed Tk widgets, all appearance customizations are made

via attaching a style to a widget, akin to using the class HTML

attribute. Separately, you define how widgets with that style will

appear, akin to writing CSS.

Unlike with HTML, you can't freely mix and match. You can't

customize some themed entries or buttons with styles and others by

directly changing appearance options.

Yes, there are a few exceptions, like labels where you can customize the

font and colors through both styles and configuration options.

Benefits

So why use styles and themes in Tk? They take the fine-grained

details of appearance decisions away from individual instances of

widgets.

 That makes for cleaner code and less repetition. If you have 20

entry widgets in your application, you don't need to repeat the exact

appearance details every time you create one (or write a wrapper

function). Instead, you assign them a style.

 Styles also put all appearance decisions in one place. And
because styles for a button and styles for other widgets can share

common elements, it promotes consistency and improves reuse.

Styles also have many benefits for widget authors. Widgets can delegate

most appearance decisions to styles. A widget author no longer has to

hardcode logic to the effect of "when the state is disabled, consult the

'disabledforeground' configuration option and use that for the foreground

color." Not only did that make coding widgets longer (and more

repetitive), but it also restricted how a widget could be changed based on

its state. If the widget author omitted logic to change the font when the

state changed, you were out of luck as an application developer using

the widget.

Using styles, widget authors don't need to provide code for every possible

appearance option. That not only simplifies the widget but paradoxically

ensures that a wider range of appearances can be set, including those the

widget author may not have anticipated.

17.1. Using Existing Themes

Before delving into the weightier matters of tastefully and selectively

modifying and applying styles to improve the usability of your

application and cleanliness of your code, let's deal with the fun bits:

using existing themes to completely reskin your application.

 Themes are identified by a name. You can obtain the names of

all available themes:

>>> s = ttk.Style()

>>>

s.theme_names()

('aqua', 'step', 'clam', 'alt', 'default', 'classic')

Tkinter encapsulates all style manipulations in the ttk.Style class. We'll

therefore need an instance of that class for this and other operations.

Built-in themes.

Besides the built-in themes and macOS includes a theme named

aqua to match the system-wide style, while Windows includes themes

named and

 Only one theme can be active at a time. To obtain the name of

the theme currently in use, use the following:

>>> s.theme_use()

'aqua'

This API, which was originally targeted for Tk 8.6, was back-ported to

Tk 8.5.9. If you're using an earlier version of Tk getting this info is a bit

trickier.

Switching to a new theme can be done with:

What does this actually do? Obviously, it sets the current theme to

the indicated theme. Doing this, therefore, replaces all the currently

available styles with the set of styles defined by the theme. Finally, it

refreshes all widgets, so they take on the appearance described by

the new theme.

Third-Party Themes

With a bit of looking around, you can find some existing add-on

themes available for download. A good starting point is

 Though themes can be defined in any language that Tk supports,

most that you will find are written in Tcl. How can you install them

so that they are available to use in your application?

 As an example, let's use the "awdark" theme, available from

Download and unzip the awthemes-*.zip file somewhere. You'll notice

it contains a bunch of .tcl files, a subdirectory i containing more

directory with images used by the theme, etc.

 One of the files is named This identifies it as a Tcl package,

which is similar to a Python module. If we look inside, you'll see a

bunch of lines like package ifneeded awdark Here, awdark is the

name of the package, and 7.7 is its version number. It's not

unusual, as in this case, for a single pkgIndex.tcl file to provide

several packages.

 To use it, we need to tell Tcl where to find the package (via
adding its directory to Tcl's and the name of the package to use.

root.tk.call('lappend', 'auto_path', '/full/path/to/awthemes-9.3.1')

root.tk.call('package', 'require', 'awdark')

If the theme is instead implemented as a single Tcl source file,

without a you can make it available like this:

root.tk.call('source', '/full/path/to/themefile.tcl')

You should now be able to use the theme in your own application,

just as you would a built-in theme.

17.2. Using Styles

We'll now tackle the more complex issue of taking full advantage

of styles and themes within your application, not just reskinning

it with an existing theme.

Definitions

We first need to introduce a few essential concepts.

Widget Class

A widget class identifies the type of a particular widget, whether it

is a button, a label, a canvas, etc. All themed widgets have a

default class. Buttons have the class labels etc.

Widget State

A widget state allows a single widget to have more than one

appearance or behavior, depending on things like mouse position,

different state options set by the application, and so on.

 As you'll recall, all themed widgets maintain a set of binary

state flags, accessed by the state and instate methods. The flags

are: and All widgets have the same set of state flags, though they

may ignore some of them (e.g., a label widget would likely ignore

an invalid state flag). See the themed widget page in the reference

manual for the exact meaning of each state flag.

 https://tkdocs.com/man/ttk_widget

Style

A style describes the appearance (or of a widget class. All themed

widgets having the same widget class will have the same

appearance(s).

 Styles are referred to by the name of the widget class they

describe. For example, the style TButton defines the appearance of

all widgets with the class

 Styles know about different states, and one style can define
different appearances based on a widget's state. For example, a

style can specify how a widget's appearance should change if the

pressed state flag is set.

Theme

A theme is a collection of styles. While each style is widget-

specific (one for buttons, one for entries, etc.), a theme collects

many styles together. All styles in the same theme will be

designed to visually "fit" together with each other. (Tk doesn't

technically restrict bad design or judgment, unfortunately!)

 Using a particular theme in an application really means that,

by default, the appearance of each widget will be controlled by

the style within that theme responsible for that widget class.

Style Names

Every style has a name. If you're going to modify a style, create a

new one, or use a style for a widget, you need to know its name.

 How do you know what the names of the styles are? If you

have a particular widget, and you want to know what style it is

currently using, you can first check the value of its style

configuration option. If that is empty, it means the widget is

using the default style for the widget. You can retrieve that via the

widget's class. For example:

>>> b = ttk.Button()

>>>

b['style']

''

>>>

b.winfo_class()

'TButton'

In this case, the style that is being used is The default styles for

other themed widgets are named similarly, e.g., etc.

It's always wise to check the specifics. For example, the treeview

widget's class is not

Beyond the default styles, though, styles can be named pretty

much anything. You might create your own style (or use a theme

that has a style) named or even GuessWhatIAm (not a wise

choice).

 More often, you'll find names like Fun.TButton or These

suggest variations of a base style; as you'll see, this is something

Tk supports for creating and modifying styles.

The ability to retrieve a list of all currently available styles is currently

not supported. This will likely appear in Tk 8.7 in the form of a new

command, ttk::style theme returning the list of styles implemented by

a theme. It also proposes adding a style method for all widgets, so

you don't have to examine both the widget's style configuration

option and its class. See TIP #584

Applying a Style

To use a style means to apply that style to an individual widget.

All you need is the style's name and the widget to apply it to.

Setting the style can be done at creation time:

b = text='Hello', style='Fun.TButton')

A widget's style can also be changed later with the style

configuration option:

b['style'] = 'Emergency.TButton'

Creating a Simple Style

So how do we create a new style like

 In situations like this, you're creating a new style only slightly
different from an existing one. This is the most common reason

for creating new styles.

 For example, you want most of the buttons in your application

to keep their usual appearance but have certain "emergency"

buttons highlighted differently. Creating a new style (e.g., derived

from the base style is appropriate.

 Prepending another name followed by a dot onto an existing

style creates a new style derived from the existing one. The new

style will have exactly the same options as the existing one except

for the indicated differences:

s.configure('Emergency.TButton', font='helvetica 24',

foreground='red', padding=10)

As shown earlier, you can then apply that style to an individual

button widget via its style configuration option. Every other button

widget would retain its normal appearance.

 How do you know what options are available to change for a

given style? That requires diving a little deeper inside styles.

You may have existing code using the classic widgets that you'd like

to move to the themed widgets. Most appearance changes made to

classic widgets through configuration options can probably be dropped.

For those that can't, you may need to create a new style, as shown

above.

State-specific appearance changes can be treated similarly. In classic

Tk, several widgets supported a few state changes via configuration

options. For example, setting a button's state option to disabled

would draw it with a greyed-out label. Some allowed an additional

state, which represented a different appearance. You could change the

widget's appearance in multiple states via a set of configuration

options, e.g., and

State changes via configuration options should be changed to use the

state method on themed widgets. Configuration options to modify the

widget's appearance in a particular state should be dealt with in the

style.

Classic Tk widgets also supported a very primitive form of styles that

you may encounter. This used the option database, a now-obscure

front end to X11-style configuration files.

In classic Tk, all buttons had the same class all labels had the same

class etc. You could use this widget class both for introspection and

for changing options globally through the option database. It let you

say, for example, that all buttons should have a red background.

A few classic Tk widgets, including frame and toplevel widgets, let

you change the widget class of a particular widget when it was first

created by providing a class configuration option. For example, you

could specify that one specific frame widget had a class of while

others would have the default class You could use the option

database to change the appearance of just the SpecialFrame frames.

Styles and themes take that simple idea and give it rocket boosters.

17.3. What's Inside a Style?

If all you want to do is use a style or create a new one with a

few tweaks, you now know everything you need. If, however, you

want to make more substantial changes, things start to get

"interesting."

Elements

While each style controls a single type of widget, each widget is

usually composed of smaller pieces, called It's the job of the

style author to construct the entire widget out of these smaller

elements. What these elements are depends on the widget.

 Here's an example of a button. It might have a border on the

very outside. That's one element. Just inside that, there may be a

focus ring. Normally, it's just the background color, but could be

highlighted when a user tabs into the button. So that's a second

element. Then there might be some spacing between that focus

ring and the button's label. That spacing is a third element.

Finally, the text label of the button itself is a fourth element.

Possible elements of a button.

Why might the style author have divided it up that way? If you

have one part of the widget that may be in a different location

or a different color than another, it may be a good candidate for

an element. Note that this is just one example of how a button

could be constructed from elements. Different styles and themes

could (and do) accomplish this in different ways.

 Here is an example of a vertical scrollbar. It consists of a

"trough" element, which contains other elements. These include

the up and down arrow elements at either end and a "thumb"

element in the middle (it might have additional elements, like

borders).

Possible elements of a scrollbar.

Layout

Besides specifying which elements make up a widget, a style also

defines how those elements are arranged within the widget. This

is called their layout. Our button had a label element inside a

spacing element, inside a focus ring element, inside a border

element. Its logical layout is this:

border {

 focus {

 spacing {

 label

 }

 }

}

We can ask Tk for the layout of the TButton style:

>>> s.layout('TButton')

[("Button.border", {"children": [("Button.focus", {"children":

[("Button.spacing",

{"children": [("Button.label", {"sticky": "nswe"})], "sticky": "nswe"})],

"sticky": "nswe"})], "sticky": "nswe", "border": "1"})]

If we clean this up and format it a bit, we get something with

this structure:

Button.border -sticky nswe -border 1 -children {

 Button.focus -sticky nswe -children {

 Button.spacing -sticky nswe -children {

 Button.label -sticky nswe

 }

 }

}

This starts to make sense; we have four elements, named and

Each has different element options, such as and border that

specify layout or sizes. Without getting into too much detail at

this point, we can clearly see the nested layout based on the

children and sticky attributes.

Styles uses a simplified version of Tk's pack geometry manager to

specify element layout. This is detailed in the style reference manual

page.

 https://tkdocs.com/man/ttk_style

Element Options

Each of these elements has several different options. For example,

a label element has a font and a foreground color. An element

representing the thumb of a scrollbar may have one option to set

its background color and another to provide the width of a

border. These can be customized to adjust how the elements

within the overall widget look.

 You can determine what options are available for each

element? Here's an example of checking what options are

available for the label inside the button (which we know from the

layout method is identified as

>>> s.element_options('Button.label')

('compound', 'space', 'text', 'font', 'foreground', 'underline', 'width',

'anchor', 'justify',

'wraplength', 'embossed', 'image', 'stipple', 'background')

In the following sections, we'll look at the not-entirely-

straightforward way to work with element options.

17.4. Manipulating Styles

In this section, we'll see how to change the style's appearance by

modifying style options. You can do this either by modifying an

existing style, or more typically, by creating a new style. We saw

how to create a simple style that was derived from another one

earlier:

s.configure('Emergency.TButton', font='helvetica 24',

foreground='red', padding=10)

Modifying a Style Option

Modifying an option for an existing style is done similarly to

modifying any other configuration option, by specifying the style,

name of the option, and new value:

s.configure('TButton', font='helvetica 24')

You'll learn more about what the valid options are shortly.

If you modify an existing style, like we've done here with that

modification will apply to all widgets using that style (by default, all

buttons). That may well be what you want to do.

To retrieve the current value of an option, use the lookup

method:

>>> s.lookup('TButton', 'font')

'helvetica 24'

State Specific Style Options

Besides the normal configuration options for the style, the widget

author may have specified different options to use when the

widget is in a particular widget state. For example, when a button

is disabled, it may change the button's label to grey.

Remember that the state is composed of one or more state flags (or

their negation), as set by the widget's state method or queried via the

instate method.

You can specify state-specific variations for one or more of a

style's configuration options with a map. For each configuration

option, you can specify a list of widget states, along with the

value that option should be assigned when the widget is in that

state.

 The following example provides for the following variations

from a button's normal appearance:

when the widget is in the disabled state, the background color

should be set to #d9d9d9

when the widget is in the active state (mouse over it), the

background color should be set to #ececec

when the widget is in the disabled state, the foreground color

should be set to #a3a3a3 (this is in addition to the background

color change we already noted)

when the widget is in the state where the button is pressed, and

the widget is not disabled, the relief should be set to sunken

s.map('TButton',

 background=[('disabled','#d9d9d9'), ('active','#ececec')],

 foreground=[('disabled','#a3a3a3')],

 relief=[('pressed', '!disabled', 'sunken')])

Because widget states can contain multiple flags, more than one state

may match an option (e.g., pressed and pressed !disabled will both

match if the widget's pressed state flag is set). The list of states is

evaluated in the order you provide in the map command. The first

state in the list that matches is used.

17.5. Sound Difficult to you?

You now know that styles consist of elements, each with various

options, composed together in a layout. You can change options

on styles to make all widgets using the style appear differently.

Any widgets using that style take on the appearance that the style

defines. Themes collect an entire set of related styles, making it

easy to change the appearance of your entire user interface.

 So what makes styles and themes so difficult in practice?

Three things. First:

You can only modify options for a style, not element options (except

sometimes).

We talked earlier about identifying the elements used in the style

by examining its layout and identifying what options were

available for each element. But when we went to make changes

to a style, we seemed to be configuring an option for the style

without specifying an individual element. What's going on?

 Again, using our button example, we had an element which,

among other things, had a font configuration option. What

happens is that when that Button.label element is drawn, it looks

at the font configuration option set on the style to determine

what font to draw itself in.

To understand why, you need to know that when a style includes an

element as a piece of it, that element does not maintain any

(element-specific) storage. In particular, it does not store any

configuration options itself. When it needs to retrieve options, it does

so via the containing style, which is passed to the element. Individual

elements, therefore, are "flyweight" objects in GoF pattern parlance.

Similarly, any other elements will look up their configuration

options from options set on the style. What if two elements use

the same configuration option (like a background color)? Because

there is only one background configuration option (stored in the

style), both elements will use the same background color. You

can't have one element use one background color and the other

use a different background color.

Except when you can. There are a few nasty, widget-specific things

called sublayouts in the current implementation, which let you

sometimes modify just a single element, via configuring an option like

TButton.Label (rather than just the name of the style).

Some styles also provide additional configuration options that let you

specify what element the option affects. For example, the

TCheckbutton style provides a background option for the main part

of the widget and an indicatorbackground option for the box that

shows whether it is checked.

Are the cases where you can do this documented? Is there some way

to introspect to determine when you can do this? The answer to both

questions is "sometimes" (believe it or not, this is an improvement;

the answer to both used to be a clear "no"). You can sometimes find

some of the style's options by calling the style's configure method

without providing any new configuration options. The reference manual

pages for each themed widget now generally include a styling options

section that lists options that may be available to change.

This is one area of the themed widget API that continues to evolve

over time.

The second difficulty is also related to modifying style options:

Available options don't necessarily have an effect, and it's not an

error to modify a bogus option.

You'll sometimes try to change an option that is supposed to

exist according to element options, but it will have no effect. For

example, you can't modify the background color of a button in

the aqua theme used by macOS. While there are valid reasons

for these cases, it's not easy to discover them, which can make

experimenting frustrating at times.

 Perhaps more frustrating when you're experimenting is that

specifying an incorrect style name or option name does not

generate an error. When doing a configure or lookup you can

provide an entirely arbitrary name for a style or an option. So if

you're bored with the background and font options, feel free to

configure a dowhatimean option. It may not do anything, but it's

not an error. Again, it may make it hard to know what you

should be modifying and what you shouldn't.

This is one of the downsides of having a very lightweight and

dynamic system. You can create new styles by providing their name

when configuring style options without explicitly creating a style object.

At the same time, this does open itself to errors. It's also not possible

to find out what styles currently exist or are used. And remember that

style options are really just a front end for element options, and the

elements in a style can change at any time. It's not obvious that

options should be restricted to those referred to by current elements

alone, which may themselves not all be introspectable.

Finally, here is the last thing that makes styles and themes so

difficult:

The elements available, the names of those elements, which options

are available or affect each of those elements, and which are used for

a particular widget can be different in every theme.

So? Remember, the default theme for each platform (Windows,

macOS, and Linux) is different (which is a good thing). Some

implications of this:

If you want to define a new type of widget (or a variation of an

existing widget) for your application, you'll need to do it

separately and differently for each theme your application uses

(i.e., at least three for a cross-platform application).

As the elements and options available may differ for each

theme/platform, you may need a quite different customization

approach for each theme/platform.

The elements, names, and element options available with each

theme are not typically documented (outside of reading the theme

definition files themselves) but are generally identified via theme

introspection (which we'll see soon). Because all themes aren't

available on all platforms (e.g., aqua is only available on macOS),

you'll need ready access to every platform and theme you need to

run on.

Consider trying to customize a button. You know it uses the

TButton style. But that style is implemented using a different

theme on each platform. If you examine the layout of that style

in each theme, you'll discover each uses different elements

arranged differently. If you try to find the advertised options

available for each element, you see those are different too. And

of course, even if an option is nominally available, it may not

have an effect).

 The bottom line is that in classic Tk, where you could modify

any of a large set of attributes for an individual widget, you'd be

able to do something on one platform, and it would sorta-kinda

work (but probably need tweaking) on others. In themed Tk, the

easy option just isn't there, and you're pretty much forced to do

it the right way if you want your application to work with

multiple themes/platforms. It's more work upfront.

17.6. Advanced: More on Elements

While that's about as far as we're going to go on styles and

themes in this book, for curious users and those who want to

delve further into creating new themes, we can provide a few

more interesting tidbits about elements.

 Because elements are the building blocks of styles and themes,

it begs the question of "where do elements come from?"

Practically speaking, we can say that elements are normally

created in C code and conform to a particular API that the

theming engine understands.

 At the very lowest level, elements come from something called

an element At present, there is a default one, which most themes

use, and uses Tk drawing routines to create elements. A second

allows you to create elements from images and is accessible at

the script level using the ttk::style element create method (from

Tcl). Any image format supported by Tk is available, including

scalable image formats like SVG, if you have the right extension.

Finally, there is a third, Windows-specific engine using the

underlying "Visual Styles" platform API.

 If a theme uses elements created via a platform's native

widgets, the calls to use those native widgets will normally appear

within that theme's element specification code. Of course, themes

whose elements depend on native widgets or API calls can only

run on the platforms that support them.

 Themes will then take a set of elements and use those to

assemble the styles that are actually used by the widgets. And

given the whole idea of themes is that several styles can share

the same appearance, it's not surprising that different styles share

the same elements.

 So while the TButton style includes a Button.padding element,

and the TEntry style includes an Entry.padding element,

underneath, these padding elements are more than likely one and

the same. They may appear differently, but that's because of

different configuration options, which, as we recall, are stored in

the style that uses the element.

 It's also probably not surprising to find out that a theme can

provide a set of common options that are used as defaults for

each style if the style doesn't specify them otherwise. This means

that if pretty much everything in an entire theme has a green

background, the theme doesn't need to explicitly say this for each

style. This uses a root style named .. If Fun.TButton can inherit

from why can't TButton inherit from .?

 Finally, it's worth having a look at how existing themes are

defined, both at the C code level in Tk's C library and via the Tk

scripts found in Tk's "library/ttk" directory or in third-party

themes. Search for Ttk_RegisterElementSpec in Tk's C library to

see how elements are specified.

18. Case Study: IDLE Modernization

This chapter presents a case study of modernizing the appearance

of a substantial Tk-based application.

Some of the changes here are slowly finding their way into the Python

source tree, but most are not there yet. You can find temporary

snapshots on

IDLE is the standard Python development environment that is

bundled with every Python release. It consists of an interactive

Python shell, editors with syntax highlighting, a debugger, etc. Its

user interface is written in Tkinter.

Overview of IDLE user interface (on Linux).

IDLE was never intended to be a replacement for more full-featured

development environments. Because it is relatively simple and

bundled with Python, it is popular for those learning (and teaching)

the language.

 Originally created by Python BDFL Guido van Rossum in 1998,

IDLE has been incrementally added to over the years by multiple

other developers. But with limited development effort spent on it, it

was showing its age, especially on platforms (e.g., macOS)

infrequently used by those improving IDLE.

 A Python Central comparison of IDE's described IDLE this way:

All those features are, in fact, present, but they do not really make an

IDE. In fact, while IDLE offers some of the features you expect from an

IDE, it does so without even being a satisfactory text editor. The

interface is buggy and fails to take into account how Python works,

especially in the interactive shell, the auto-completion is useless outside

the standard library, and the editing functionality is so limited that no

serious Python programmer — heck, no serious typist — could use it

full-time.

If you use an IDE, it should not be IDLE.

With its buggy and dated user interface, IDLE was at risk of being

removed from the Python distribution altogether. Yet, because it is

simple and bundled, many people, particularly those teaching Python,

were eager to see IDLE leap forward.

 IDLE was obviously a great candidate to be modernized, using

newer Tk features like the themed widgets to help spur some

redesign. But it was about more than just swapping widgets. Many

improvements could be made just by changing how the "classic"

widgets were being used to better reflect a more modern design

aesthetic.

IDLE, which is an application, is part of Python's standard library (i.e.,

99% designed to be used by other code). That meant following many

policies and procedures (not really appropriate for an application) that

made changes difficult. Removing some of those roadblocks (see PEP was

a significant step required for the types of changes being discussed here.

18.1. Project Goals

As you can imagine, modernizing a large application like this,

based on "classic" Tkinter, was not entirely straightforward. In this

chapter, I'll walk through some of the user interface changes

made and why.

 Everyone involved wanted to see IDLE look a lot better than it
did, though nobody was under the illusion that it would turn into

a stunning example of cutting-edge design. But something that fit

in more so that people could learn about Python without getting

distracted by the clumsiness of their tools seemed doable.

 The goal also wasn't to compete with Python IDE's more

commonly used by professional programmers, such as etc.

Though some more experienced Python developers use IDLE,

sporadically or otherwise, it primarily needed to appeal to

newcomers to the language and often those new to programming

altogether.

 There was no shortage of previous attempts to radically

advance IDLE, resulting in several forks boasting all kinds of

improvements. Many of them used other GUI toolkits or modules

that weren't part of the standard library. Staying with Tkinter and

the standard library was important to ensure every improvement

could, over time, make it into the official version that ships with

Python, rather than becoming just another fork.

 As well, the hope was to make IDLE easier to contribute to.

This suggested pruning down a substantial volume of code,

removing some redundancies and inconsistencies, cleaning up

some of the more complex pieces, simplifying interactions between

system components, etc. There was also a substantial list of

reported bugs that we hoped to make a dent in.

 While no less critical, I'll largely defer discussion of the

substantial issues surrounding software architecture, backward

compatibility (including systems running Tk 8.4, pre-ttk, which

received only a few selective improvements), etc.

 Throughout this chapter, you'll find links to individual issues in
Python's issue tracking system, which often provide additional

insight into various peoples' thought processes around changes.

As you'll see, this chapter highlights many of the shortcomings of

IDLE's user interface. This is done mainly for emphasis because many

of the problems shown here are common to many applications and

user interfaces. I have only the highest respect for the people who

donated their limited time and resources to this open source project

and had to consciously make tradeoffs between time, features, and

user interface, all within the context of a decidedly non-trivial

codebase.

18.2. Menus

The very first change that was made was to remove the archaic

tearoff menus. The macOS version of Tk doesn't even support

them, but they were still there on Windows and X11. See

Tearoff menus on Windows and Linux.

The change here was to add a "tearoff=0" option to the few

places in the code where these menus were created.

 At least that was easy.
 There were also several bugs where items in the menu were

not properly disabled when the feature was unavailable. This led

to either menu items that did nothing (confusing for learners) or

error dialogs that said little more than "you can't do that."

18.3. Main Window

One good thing about IDLE is that because it revolves around an

editor and a shell, most of it really is a Tk text widget, and there

was very little about its user interface that had to change. But even

in the main window, which is mostly just a text widget, there were

improvements to be had.

 The following images show the original version of IDLE's shell

window, pre-modernization, just as someone would see when they

first launched the program.

 Looking at them, what improvements would you make?

Main IDLE window on macOS.

Main IDLE window on Windows.

Main IDLE window on Linux.

Default Font

The first change that was made had to do with the default font.

IDLE hardcoded 10 point Courier and used that on all platforms.

This didn't actually look too bad in Windows, was ok on Linux, but

looked terrible on macOS; see Sure this could be changed through a

preferences dialog, but the defaults certainly didn't leave a good

impression.

 While one option would simply be to write the code to pick a

good font depending on which platform we're running on, the

default was instead changed to use Tk's built-in which provides a

better default on each platform.

 You can see the differences in the screenshots below. Notice how

the new fonts seem to match better with system terminal windows

that are shown.

IDLE main window using TkFixedFont (macOS).

IDLE main window using TkFixedFont (Windows).

IDLE main window using TkFixedFont (Linux).

Speaking of preferences dialogs, if you want to change the font it

often helps to know what the font actually is (using Here's the new

code from IDLE's preferences dialog that figures that out:

 if (family == 'TkFixedFont'):

 f = Font(name = 'TkFixedFont', exists = True, root =

root)

 actualFont = Font.actual(f)

 family = actualFont['family']

 size = actualFont['size']

 if size < 0:

 size = 10 # if font in pixels, ignore actual size

 bold = 1 if actualFont['weight']=='bold' else 0

For the record, the fonts that Tk chose for TkFixedFont are Monaco

11 on macOS, Courier New 10 on Windows, and DejaVu Sans Mono

10 on Linux (Ubuntu 14 to be specific).

Around the Text Widget

There were a few other cosmetic things that just weren't right

around the edge of the main window; see Look back at the earlier

screenshots of the IDLE main window.

 Notice there's a border around the text widget. It's most

noticeable on macOS, where it's a dark black, somewhat less so on

Linux, and barely perceptible on Windows. This is the result of Tk's

"highlightthickness" attribute, which is present when the text widget

has the focus.

 If the text widget doesn't have the focus, such as when the
window becomes inactive, the highlight goes away:

Status bar on inactive window.

Notice how on the macOS screenshot, without the highlight, the

status bar at the bottom of the window blends into the text widget.

Not good.

 As you'll see from looking at other applications, the border

around the text widget is no longer a common convention. So let's

start by removing that, which is as easy as adding

"highlightthickness=0" when creating the text widget.

 That still leaves us with the problem of the status bar blending

into the editor. We changed the status bar to be a ttk.Frame widget,

which has a background shading on all platforms. We also placed a

ttk.Separator widget just above the status bar to give us that clean

separation.

 Each of the line and column indicators were labels, previously

created with:

label = Label(self, bd=1, relief=SUNKEN, anchor=W)

This was replaced with a ttk.Label to ensure it matched the frame.

We also did away with the 1990's sunken "3d" look.

label = ttk.Label(self)

Last but not least, we can replace the original Tk scrollbar with the

newer ttk.Scrollbar widget.

 The resulting changes to the main window are shown below.

Despite these being fairly minor, often subtle changes, they go a

long way towards IDLE's main window looking a lot cleaner, more

modern, and "just fitting in" on all platforms.

IDLE's main window, with improvements (macOS).

IDLE's main window, with improvements (Windows).

IDLE's main window, with improvements (Linux).

18.4. Preferences Dialog

One visible piece that greatly needed improvement was the

Preferences dialog. Again, here are screenshots on the three

platforms:

IDLE's Preferences window (macOS).

IDLE's Preferences window (Windows).

IDLE's Preferences window (Linux).

The other tabs allow you to modify individual colors for syntax

highlighting, keystrokes assigned to particular operations, and a

few other miscellaneous things.

 While there was some debate as to the need for this level of

configuration on what was primarily a learning environment, it

seemed reasonable to at least make what was there look and

work better before considering any more radical surgery; see

 Among other things, the Preferences dialog was changed from

modal (which, amusingly enough, didn't quite work on macOS,

allowing multiple copies to be created) to modeless, though I

won't go further into that at this point; see

Tabs

The first issue to address was the tabs used to switch between

the four different preference panes. The original used a custom

"megawidget", as classic Tk doesn't have its own widget. While

the Windows and Linux ones don't look too bad, on recent

versions of macOS, there is a built-in tab widget that looks quite

different.

It's actually more common in macOS applications now to use

something similar to a toolbar (row of icons with labels along the

top or side) to switch between preference panes, though some

programs do still use tabs. Tabs are very common on Windows and

Linux.

The code was modified to use the ttk.Notebook widget, which not

only looks better on each platform but allows us to scrap a lot

of code for managing tabs ourselves.

Updating Widgets

The next obvious step was upgrading the "classic" widgets to

their themed counterparts. On this screen, that included the

buttons, labels, frames, checkbox, scrollbar, etc. There were a few

others on some of the other panes. Generally, this was a

straightforward process, often involving removing widget options

that were no longer needed or supported by the themed widgets.

 Sometimes choosing a different widget made more sense. In

this screen, the option menu used for font size was better

replaced by a combobox. Similarly, the scale widget is not

commonly seen in today's user interfaces and was replaced with

the more familiar (and compact) spinbox widget.

 There were also various non-standard ways of using certain
widgets or specifying certain types of data. These were generally

modified to use more familiar paradigms. There were several

general issues discussed relating to the design of these dialogs,

see, e.g., and

Layout

While this dialog is a bad example (just given the space

imbalance between the left and right halves), a lot of time was

spent looking at widget spacing and alignment in dialog boxes.

 The general approach was to find similar examples in other

applications and use those as a guide. Where are the buttons

located? How are multiple fields of a dialog organized? Where are

labels relative to the widget they're labeling? Are they left- or

right-aligned, capitalized, or do they have a trailing colon? These

are the sorts of questions to think about.

A great starting point is converting from using the old pack geometry

manager to Because of the way it works, layouts tend to have weird

and inconsistent alignment and spacing, especially if they've been

modified over time. Using grid will increase maintainability because it

uses a more familiar mental model and isn't dependent on the order

in which widgets are inserted.

It's likely impossible to come up with one layout that looks

fantastic on all platforms, but often you can come up with one

(possibly with a couple platform-specific tweaks in the code) that

looks decent.

 A revised version of the dialog, incorporating many of the

techniques here, is shown below.

IDLE Preferences, revised version (macOS).

IDLE Preferences, revised version (Windows).

IDLE Preferences, revised version (Linux).

Another Example

The screenshot below shows a before and after of the IDLE

Preferences pane, which controls syntax coloring; see

IDLE Themes pane, before (Windows).

IDLE Themes pane, after (Windows).

Again, substituting widgets and using more familiar conventions is

one piece of this. I think the bigger changes have to do with

thinking about things from the users' perspective. Particularly as a

beginner tool, if you're in here at all, it's probably to switch

themes, not tweak colors, which is more prominent in the new

version. It also does away with an arbitrary distinction between

"built-in" and "custom" themes.

 I think the new version is a big improvement, though I have

yet to convince some people of this to date. This being open

source, we'll see what happens!

18.5. Other Dialogs

There are multiple other dialog boxes in IDLE; we'll consider a

couple more examples here.

Find Dialog

Planning on doing some more changes on these, likely combining Find

and Replace into a single dialog.

One of the find/search dialogs is shown below, again with before

and after on the three platforms; see

IDLE Find dialog, before and after (macOS).

IDLE Find dialog, before and after (Windows).

IDLE Find dialog, before and after (Linux).

The first step was upgrading the widgets to use the equivalent

themed widgets. The effect of this is most obvious with the buttons

(being consistent with the capitalization doesn't hurt either).

 Speaking of buttons, notice they moved to the bottom on macOS

and Linux, though they remained on the right on Windows. On

examining multiple different applications, our target users would

likely have encountered on each platform, we found these locations

were common. With only a few lines of extra code needed to

special-case for this layout difference, it made sense to handle

things this way.

 Other aspects of the layout were also improved. Looking at the

original dialogs (especially how the buttons don't align with other

widgets), I originally thought it was created with and expected to

convert it to Interestingly, it was already using Why then were the

widgets unaligned, a hallmark of layouts?

 This turned out to be a result of using many nested For example,

the buttons were placed into their own frame and then placed into

the rest of the window. Because of that, the individual buttons

couldn't be aligned with widgets in the rest of the user interface.

 Nested frames were required when using but often with grid it is

better to avoid them except in exceptional circumstances. That

allows you to align different parts of the user interface (at the

expense of much columnspan/rowspan tweaking).

 A more substantial reorganization would have likely removed the

nested frames, but particularly with adjusting the buttons, this

relatively simple layout could be made to work with just a few

tweaks.

You'll notice many older Tkinter user interfaces have the problem here of

their contents running to the edge of the windows, which often doesn't

look right. I've gotten into the habit of placing a ttk.Frame directly

inside each toplevel, with some additional padding, and then placing the

rest of the user interface inside that.

Like Preferences, the Find dialogs were also modal, which meant you

had to dismiss them before doing any editing of your file, though

at least they did remember the previous settings when you reopened

them. These were eventually changed to be regular modeless

windows.

About Dialog

Speaking of modal dialogs, the About box was also originally

modal. Not only that, getting more information (e.g., the IDLE

README file) resulted in launching another modal dialog, which

needed to be dismissed to go back to the first modal dialog, which

needed... etc.

IDLE's doubly-modal About dialog (macOS).

Making the dialog non-modal was the first priority. Second, the

nested dialogs were eliminated using a progressive disclosure

technique. The initial dialog is fairly sparse but contains a 'More...'

"link." When clicked, it expands the window to show one of the

documentation files, with an option to switch to any of the others.

 The 'More...' "link" effectively plays the role of a button, but takes

advantage of everyone's familiarity with web browsers to provide a

visually simpler alternative. As far as implementation, we use a

(classic, non-themed) label widget, colored blue, and attach a mouse

click binding to it.

You can help convey that the link is clickable by changing the cursor

when the mouse is over it (via the "cursor" option found on many

widgets). On macOS, choose the platform-specific "pointinghand" cursor,

on Windows and Linux choose the "hand2" cursor, which actually gets

mapped to something more appropriate on those platforms.

Revised About dialog (macOS).

Online Help

IDLE also had a (needless to say, modal) help dialog which

displayed information on using the program. This displayed a plain

text help file that looked similar to the 'About - Readme' window

above.

 At the same time, like the rest of Python, there was reference

created as "restructured text" which can then be formatted using a

tool called Sphinx into HTML, text, etc.

 The documentation in IDLE's help dialog was based on a

separate but similar plain text file. Keeping the two in sync was a

problem. They were separate because Sphinx's plain text rendering

didn't look all that good, and all the extra navigation, etc. in the

HTML rendering wouldn't be needed for online help, and then

there's the hassle of opening a web browser, etc.; see

 Tk's text widget is smart enough to handle the very basic

formatting used in IDLE's documentation, and Python includes an

HTML parser in its standard library. Putting the two together made

displaying a simplified version of the HTML reference documentation

easy.

Online help using text widget (macOS).

It's easy to get carried away here. Back in the mid-1990s, a tiny HTML

parser in Tcl spawned a slew of "web browser in a text widget"

adventures, first in Tcl and then in other languages, e.g., Python's Grail.

Trying to keep up with everything that large teams of developers are

putting into real web browsers is a fool's errand. Yet, for very limited

and constrained subsets of HTML (as might be found in online help),

it's an entirely reasonable approach.

Query Dialogs

Still with the modal dialog theme, IDLE used the "simpledialog"

package, distributed as part of Tkinter, to request certain small

pieces of information from users via modal dialogs. An example is

the "Goto line..." command. This, along with an example of the alert

that is presented if you type in something invalid is shown below.

Goto line dialog and error handling (macOS).

The alert-on-dialog isn't quite as bad as the dialog-on-dialog pattern

we saw before. But these dialogs could certainly stand to be

cosmetically updated and a few other tweaks made. For example,

while they correctly interpreted hitting the Return or Escape keys as

synonymous with pressing OK or Cancel, they didn't also allow for

the alternate macOS conventions (Enter key on the numeric keypad

and Command-period); see Some other customizations would have

been nice to have (e.g., changing the name of the OK button) that

simpledialog didn't support.

 Regarding the error handling, things were, in some cases, handled

worse. For example, there is a command to open an editor window

containing the source of a module from Python's stdlib. See what

happens if you make a typo.

Open module dialog with error (macOS).

Because the dialog doesn't know if the module name is correct,

validation isn't done until after the dialog is dismissed. So the error

alert gets attached to another window. To try again, you have to

dismiss that, use the menu to reopen the dialog, and try again

(from scratch).

 There were a couple of places in the code where more validation

in the dialog was really necessary. Because the "simpledialog" code

was part of Tkinter and wasn't readily extensible in the ways needed,

developers had to resort to "inheritance by text editor" (i.e., copy

the entire simpledialog code and modify the copy). Twice, separately.

 Since the appearance needed to be updated anyway, we
generalized things and ignored Tkinter's simpledialog module

altogether. Instead, a single general-purpose replacement was created

that could be used throughout IDLE (and still resulted in less code).

New query dialog (macOS).

Besides the updated widgets and alignment, notice how error

messages from invalid input are now shown in the dialog itself (a

technique seen frequently in web applications) rather than a separate

alert. For macOS, we also made sure to add key bindings for the

numeric keypad Enter key and Command-period, and also made

sure the window looked like a modal dialog is supposed to via this

little gem:

self.tk.call('::tk::unsupported::MacWindowStyle', 'style', self._w,

 'moveableModal', '')

As far as validation, the query dialog was structured to accept a

validation callback, which could then handle arbitrary criteria. For

example, here is the validation code used when people enter the

name of a new theme. It makes sure it fits certain syntactical

requirements and also hasn't been already used.

def newtheme(self):

 def validate_theme(s):

 if not s:

 raise ValueError('Cannot be blank')

 if len(s) > 30:

 raise ValueError('Cannot be longer than 30 characters')

 if s in self.all_theme_names():

 raise ValueError('Name already used')

 new_theme = querydialog.askstring(parent=self, prompt='...',

 title='Create New Theme', validatecmd=validate_theme)

 if new_theme is not None:

 ...

A generic 'integer' validation callback, with an optional minimum

and maximum, was added to the query dialog module for dialogs

like the 'Goto line...' dialog.

Dialog Placement

Several dialogs, including alerts, file save, etc., appeared in the

middle of the screen, rather than close to the window that they

were associated with; see

 Choosing the right window as the parent of the dialog is
important to ensure the dialog window appears near that window.

On macOS, these dialogs are often attached to the title bar of the

parent window (see the error alerts in the previous section).

The front ends to these dialogs in Tkinter support both a master and a

While most of the time, "master" and "parent" are used interchangeably

in Tkinter, that's not the case here. If you provide only the master, the

dialog won't be attached to that window (but the dialog still needs an

existing window to create the dialog, which is why the master parameter

is there). If the dialog is associated with another window, be sure to use

the parent parameter.

18.6. Window Integration

Multiple people had hoped to make it possible to have everything

displayed in a single window, to avoid the window management

hassles that can sometimes trip up people, see, e.g., and

 Below is an early, partially-functional mockup of some of the

things we wanted to accomplish.

Early mockup of window integration (macOS).

At this point, almost everything here has been completed, and it ended

up looking almost identical to the original mockup. See, once in a while,

it happens!

Tabbed Editor

Even beginner programmers have to juggle multiple different source

files. If each gets its own window, as was the case originally in

IDLE, things can get messy and/or lost pretty quickly. Using tabs to

organize multiple files in a single window is a familiar, effective

solution.

When architecting your application, don't build large components as

subclasses of Toplevel, or assume they'll be the only thing in the window

in the future. Getting around that assumption in the code took a large

amount of work. If components are instead built as frames, they can be

easily inserted into a toplevel, a paned window, a tabbed notebook,

another frame, etc.

Luckily, we can rely on the ttk.Notebook widget to provide the tabbed

user inteface, just like we did in Preferences.

 Or maybe not.

 Unfortunately, the ttk.Notebook widget (and the underlying
platform widgets it uses) only really support displaying and switching

between a small, fixed number of tabs. There's nothing built-in to

support adding or closing tabs from the user interface, which we

definitely need here. And as every programmer knows, it is more

than possible to need a large number of tabs.

 As you've seen in different editors and word processors, everyone
does things slightly differently. We did our own custom tab widget

(sigh...) for IDLE. The design borrowed heavily from the TextMate

editor on macOS. It allows creating new tabs, closing old ones,

dragging to rearrange the order, tooltips on each tab, indicating if

the contained file needed saving, etc. When the number of tabs

grows too large to comfortably display, the remainder are accessible

via a popup menu on the last visible tab.

The tabbed widget implementation relies on a single Tkinter canvas to

display the row of tabs and handle all interaction. Switching the window

content is separate from the widget, with a simple callback mechanism

used to coordinate everything.

Debugger

The design of the original debugger (which had its own set of flaws,

see was too tall to be integrated as we wanted.

Original IDLE debugger (macOS).

The user interface was substantially revised, with a layout that would

work both in a standalone window and when integrated. The new

version uses a paned window to separate the controls and stack on

the left from the variable display on the right. Both the stack and

variable display are implemented using tree view widgets. This also

provides a great deal of control of how much space each element

will use.

New IDLE debugger (macOS).

Integrated Shell and Debugger

Another paned window was used to integrate the shell and the

debugger with the tabbed editor. Additional controls will be added to

show/hide the panes as the implementation progresses.

 The embedded shell is interesting too. Recall that IDLE normally

has a single Python shell window running another Python process;

when modules in an editor are "run," they do so via that shell. It's

nice to have that big shell available, and we don't necessarily want

to start up a separate shell in the editor.

 New in Tk 8.5, the Text widget actually supports "peers," which are
separate widgets that share the same text backend. That means when

something changes in one, it changes in the other. It's a seamless

way to solve our problem here.

18.7. Workarounds, Hacks, and More

This being a chapter on actual experiences modernizing a real

application, it would be a lie to say that the underlying user

interface toolkit (Tk and the Tkinter wrapper) always worked

exactly as it should. Like IDLE, Tkinter and Tcl/Tk are the results

of incredible volunteer efforts. That being said...

Tk and Tkinter have some bugs and rough edges. I know you're

shocked.

In this section, I'll try to catalog just a few of the particular

"gotchas" that we ran into, as well as provide some little tips

that don't necessarily fit elsewhere but help provide a bit more

polish to the user interface.

Tool Tips

tool tips broken on macOS;

see

MacWindowStyle help for tooltips, vs. wm overrideredirect

elsewhere

Context Menus

bogus text widget bindings interfere with popup clicks;

see

two different popup click bindings needed on macOS;

Peer Text Widgets

broken peer text widget API in Tkinter;

see

Modal Windows

macOS not doing fully modal, plus window style;

see

Copyright

Modern Tkinter for Busy Python Developers

Quickly learn to create great looking user interfaces for Windows,

Mac and Linux using Python's standard GUI toolkit

Third Edition. Copyright © 2012-2020 by Mark Roseman

Revised Nov/2021.

For the latest info and updates, visit: tkdocs.com/updates

Published by Late Afternoon Press. Victoria, BC, Canada.

This book brings together various information from the website

which Mark developed as a much-needed source of

documentation on the modern features available in Tk. The

website contains information on using Tk through Tcl, Ruby and

Perl as well as Python. This book should be considered a

companion to that website, and supports its further development.

ISBN: 978-1-9991495-8-1 (EPUB)

About the Author

Mark Roseman is a veteran software developer, entrepreneur, and

writer. He previously worked and published extensively on topics

related to user experience and technology to support collaboration

between groups of people, and founded two software startup

companies.

He has been using Tcl, Tk and Python since the early 1990's, and

has been influential within the Tcl/Tk community.

Mark lives in Victoria, BC, Canada. He can be contacted via his

personal website,

He has published additional information related to Tk and Tkinter

at his tkdocs.com website.

For the latest info and updates, visit: tkdocs.com/updates

	Start

